Вязкоупругая модель переключения поляризации в полимерных сегнетоэлектриках

© С.П. Палто, В.В. Лазарев, Ю.А. Драгинда, С.Г. Юдин

Институт кристаллографии им. А.В.Шубникова РАН, Москва, Россия

E-mail: lbf@ns.crys.ras.ru

Представлены теоретические основы модели вязкоупругого переключения поляризации в "мягких" органических сегнетоэлектриках. В рамках модели описаны амплитудно-частотные зависимости петель гистерезиса при переключении поляризации в тонких пленках сегнетоэлектрического сополимера поливинилиденфторида—трифторэтилена.

Работа поддержана в рамках программы ОФН РАН "Физика новых материалов и структур". Работа выполнена при финансовой поддержке в рамках гранта РФФИ № 12-02-00214а.

1. Введение

Одна из первых теорий сегнетоэлектричества теория Ландау-Гинзбурга (ЛГ), впервые построенная Гинзбургом в 1945 г. в рамках общей теории фазовых переходов Ландау, — позволила объяснить переключение поляризации в сегнетоэлектриках, используя феноменологические параметры, известные как коэффициенты ЛГ, измеряемые в эксперименте. Модель ЛГ основывается на разложении плотности свободной энергии сегнетоэлектрика по четным степеням сегнетоэлектрической поляризации. Поэтому в модели ЛГ не в полной мере учитывается векторная природа поляризации. В частности, пренебрегается возможными упругими деформациями, вызываемыми изменением локальной ориентации вектора поляризации. Сегнетоэлектрическое переключение в модели ЛГ сопровождается изменением величины поляризации исключительно вдоль линии действия электрического поля с последующим скачком в противоположное (реверсивное) состояние вдоль направления поля (рис. 1, a). Модель ЛГ оперирует силами, воздействующими на электрические заряды вдоль направления электрического поля, а не моментами сил, способными поворачивать электрические диполи. Как показано в серии работ [1-3], модель ЛГ способна удовлетворительно объяснить переключение поляризации в сверхтонких (толщиной в несколько нанометров) полимерных пленках из известного сополимера поливинилиденфторидатрифторэтилена (ПВДФ-ТрФЭ) состава 70:30. Однако попытка применения модели ЛГ к более толстым (10-200 nm) пленкам ПВДФ-ТрФЭ сталкивается с серьезными проблемами как при объяснении значений коэрцитивного поля, так и при описании особенностей динамики переключения (петель гистерезиса, измеренных в диапазоне частот от долей герца до сотен герц при разных амплитудах внешнего переменного поля) [4]. В настоящей работе рассматривается альтернативная — вязкоупругая (VE, от англ. viscous electric) — модель. В противоположность модели ЛГ VE-модель основывается на возможности вращения вектора поляризации без изменения его величины (амплитуды) в средах со слабым (ван-дерваальсовым) межмолекулярным взаимодействием, что иллюстрирует рис. 1, b. Впервые на необходимость учета вязкоупругих свойств для объяснения переключения поляризации указывалось в работе [5]. Позже в [4] были изложены основополагающие принципы VE-модели, а также было показано, что эта модель дает адекватное описание толщинной зависимости коэрцитивного поля и динамических характеристик токов переполяризации для пленок $\Pi B \Box \Phi - T p \Phi \to T$ в диапазоне толщин 10-200 nm.

В настоящей работе мы детально излагаем теоретические аспекты VE-модели и иллюстрируем ее возможности при описании динамических петель гистерезиса, измеренных на разных частотах и амплитудах переключающего внешнего поля.

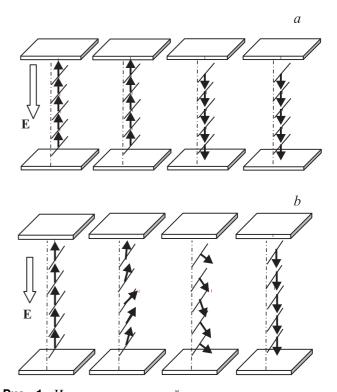


Рис. 1. Иллюстрация различий сегнетоэлектрического переключения для случаев модели $\Pi\Gamma$ (a) и вязкоупругой модели (b). Изображения слева соответствуют начальному моменту, когда происходит включение электрического поля E.

2. Модель и эксперимент

В VE-модели предполагается, что полимерная сегнетоэлектрическая пленка — это вязкоупругая ориентационно-упорядоченная полярная среда. В каждой точке эта среда характеризуется единичным вектором т, направленным вдоль локального вектора спонтанной поляризации ${\bf P}=P{\bf m}$, который в свою очередь строго связан с преимущественным направлением дипольных моментов ансамбля молекул или мономерных звеньев полимерной цепи (в случае сегнетоэлектрических полимеров). Величина Р фиксирована при заданной температуре, а ориентация вектора поляризации в пространстве описывается некоторым векторным полем с пространственным распределением $\mathbf{m} = \mathbf{m}(x, y, z)$. Таким образом, динамика процесса переключения определяется вращением т в вязкой среде, которое сопровождается упругой деформацией векторного поля $\mathbf{m}(x, y, z)$. Деформация возникает из-за конкуренции момента электрических сил, действующего на диполи, и момента упругих сил, передаваемого от граничной поверхности в объем благодаря упругости среды. В VEмодели коэрцитивное поле возникает исключительно изза локализованных сил поверхностного взаимодействия (сцепления) молекул полимера с граничными поверхностями электродов.

В общем случае задача решается в рамках вариационного формализма Эйлера—Лагранжа. Задача сводится к нахождению минимума свободной энергии для слоя среды, расположенного между двумя электродами. Аналогичная процедура используется в континуальной теории Эриксона—Лесли, которая является основной для всей физики жидких кристаллов [6].

Плотность свободной энергии сегнетоэлектрической пленки между двумя электродами может быть записана как

$$F = F_{\text{bulk}} + W_1 \delta(z)|_{z=0} + W_2 \delta(z-d)|_{z=d}, \tag{1}$$

где $W_{1,2}$ — плотность поверхностной энергии, относящаяся к взаимодействию молекул сегнетоэлектрика с граничными поверхностями электродов (нижние индексы 1 и 2 относятся к первому и второму электроду соответственно); $\delta(z)$ — дельта-функция Дирака, указывающая на локальный характер поверхностного взаимодействия, координатная ось z направлена вдоль нормали к пленке, d — толщина пленки. Плотность объемной свободной энергии F_{bulk} состоит из слагаемого F_{elast} , учитывающего энергию упругой деформации, и вклада от взаимодействия с электрическим полем \mathbf{E}

$$F_{\text{bulk}} = F_{\text{elast}} - P(\mathbf{mE}). \tag{2}$$

В (2) мы пренебрегаем электрическим вкладом, связанным с диэлектрической анизотропией сегнетоэлектрического материала пленки.

Если пленка однородна в плоскости xy, так что $\mathbf{m} \equiv \mathbf{m}(z)$ зависит только от z-координаты, а внешнее поле направлено вдоль оси z, т.е. $\mathbf{E} = (0, 0, E_z)$, то

динамика вектора **m** в объеме может быть описана в рамках формализма Эйлера–Лагранжа системой трех уравнений

$$\gamma \frac{dm_i}{dt} = -\frac{\partial (F_{\text{bulk}} + g)}{\partial m_i} + \frac{d}{dz} \left(\frac{\partial (F_{\text{bulk}} + g)}{\partial m_i} \right)$$
(3)

с граничными условиями

$$-\frac{\partial (W_{1,2}+g)}{\partial m_i} \pm \frac{\partial (F_{\text{bulk}}+g)}{\partial m'_i} = 0, \tag{4}$$

где $i=\{x,y,z\}$, $m_i'=\partial m_i/\partial z$; для простоты тензор вращательной вязкости заменен скалярной величиной γ . Необходимость использования в (3) величины $F_{\text{bulk}}+g$ вместо F_{bulk} вызвано ограничением на длину вектора \mathbf{m} , который является единичным вектором. В этом случае ограничивающая функция с множителем Лагранжа λ определяется как $g=(1-m_x^2-m_y^2-m_z^2)\lambda/2=0$. С физической точки зрения граничные условия (4) описывают баланс моментов упругих сил в объеме и моментов сил поверхностного сцепления. Знаки "+" и "-" выбираются соответственно для первой и второй поверхностей.

Поверхностная энергия может быть представлена в терминах ориентации вектора \mathbf{m} по отношению к вектору нормали к поверхности \mathbf{h} следующим образом:

$$W_{1,2} = A_{1,2}(\mathbf{mh}_{1,2}) + \frac{1}{2}B_{1,2}(\mathbf{mh}_{1,2})^2.$$
 (5)

Первый член в (5) — полярный вклад во взаимодействие дипольных молекул с граничными поверхностями. Его знак зависит от взаимной ориентации вектора поляризации и нормали h. Если величина A отрицательна, то диполи стремятся ориентироваться вдоль h. В поляризованном состоянии m и h однонаправлены у первой поверхности и имеют противоположное направление у второй поверхности. Второй член в (5) является аналогом потенциала Рапини, широко используемого в физике жидких кристаллов [6]. При отрицательном значении В этот член всегда стабилизирует ориентацию m параллельно нормали к пленке у каждой граничной поверхности независимо от того, совпадают или взаимно противоположны направления векторов m и h.

По аналогии с жидкими кристаллами упругая энергия может быть представлена как функция, зависящая от \mathbf{m} , $\operatorname{div}(\mathbf{m})$ и $\operatorname{rot}(\mathbf{m})$. Для нашей геометрии, предполагая отсутствие деформаций кручения, эту зависимость в простейшем одноконстантном представлении можно записать как

$$F_{\text{elast}} = \frac{1}{2} K \left(\frac{\partial m_z}{\partial z} \right)^2, \tag{6}$$

где K — коэффициент упругости для деформации изгиба.

С учетом (6) уравнения (3) упрощаются и принимают вид

$$\gamma \frac{dm_x}{dt} = \lambda m_x, \qquad \gamma \frac{dm_y}{dt} = \lambda m_y,
\gamma \frac{dm_z}{dt} = K \frac{d}{dz} \left(\frac{\partial m_z}{\partial z} \right) + PE_z = \lambda m_z.$$
(7)

Суммируя первое и второе уравнения (7) после умножения их на m_x и m_y соответственно, легко получить, что

$$\lambda = -\gamma \, \frac{1}{1 - m_z^2} \, \frac{dm_z}{dt}.\tag{8}$$

Подставляя (8) в третье уравнение системы (7), получаем основное уравнение для описания динамики z-компоненты единичного вектора поляризации

$$\gamma \frac{dm_z}{dt} = \left(K \frac{d}{dz} \left(\frac{\partial m_z}{\partial z}\right) + PE_z\right) (1 - m_z^2). \tag{9}$$

Используя (5) и (6), граничные условия (4) можно записать в следующем виде:

$$\pm A_{1,2} + B_{1,2}m_{z,1,2} \pm K \frac{\partial m_{z,1,2}}{\partial z} = 0.$$
 (10)

Если левая часть (9) равна нулю, приходим к статическому случаю. Исключая тривиальный случай $m_z \equiv m_z(z) = 1$ получаем, что уравнение статического равновесия сводится к равенству нулю первого множителя в правой части уравнения (9). Тогда исходя из граничных условий (10) можно найти уравнения для равновесного распределения векторного поля и коэрцитивного электрического поля. Интегрирование первого множителя в правой части (9) по z дает

$$K\frac{\partial m_z}{\partial z} + P \int_0^z E_z dz + C = 0, \tag{11}$$

где константа интегрирования C может быть найдена из граничных условий (10). Так, используя (10) в (11) соответственно для z=d и 0, легко получить

$$K\frac{dm_{z}}{\partial z} + P \int_{0}^{z} E_{z} dz - P \int_{0}^{d} E_{z} dx + (A_{2} - B_{2}m_{1,2}) = 0,$$
(12)

$$K\frac{dm_z}{dz} + P\int_{0}^{z} E_z dz + (A_1 + B_1 m_{z,1}) = 0, \qquad (13)$$

где $m_{z,1}$ и $m_{z,2}$ являются z-компонентой ${\bf m}$ при z=0 и d соответственно. Вычитая (13) из (12), имеем

$$(A_2 - B_2 m_{z,2}) - (A_1 + B_1 m_{z,1}) - P \int_0^d E_z dz = 0.$$
 (14)

Уравнение (14) определяет равновесное распределение поля E_z и соответствующие ему значения $m_{z,1,2}$ для нетривиального случая $m_{z,1,2} \neq \pm 1$. При симметричных граничных условиях $A_1 - A_2 = 0$, $B_1 = B_2 = B$, и мы

имеем $m_{z,1} = m_{z,2} = m_{z,0}$. Поскольку интеграл в левой части (14) — это напряжение U, приложенное к пленке,

$$U = \frac{-2Bm_{z,0}}{P} \tag{15}$$

соответствует равновесной величине $m_{z,0}$ на поверхности. Отрицательный знак в (15) указывает на то, что поле E_z имеет знак, противоположный величине $m_{z,0}$. Именно это и необходимо для осуществления сегнетоэлектрического переключения. В противном случае выполняется тривиальное условие $m_z = \pm 1$, когда отсутствует какая-либо деформация векторного поля, и соотношение [14] неправомерно. На практике строгое условие $m_z = \pm 1$ всегда нарушается наличием флуктуаций ориентационного упорядочения.

Максимальное абсолютное значение U в (15) при положительном значении $m_{z,0}$ определяет коэрцитивное напряжение сегнетоэлектрического переключения. Очевидно, что максимальная абсолютная величина числителя в (15) равна 2B при $m_{z,0} \to 1$. Таким образом, для абсолютной величины максимально возможного коэрцитивного напряжения имеем соотношение

$$U_c = \left| \frac{2B}{P} \right|. \tag{16}$$

Отличительной особенностью VE-модели переключения является то, что переключение характеризуется коэрцитивным напряжением, которое не зависит от толщины пленки, т.е. коэрцитивное поле обратно пропорционально толщине пленки, что согласуется с экспериментом [4].

В случае асимметричных граничных условий петля сегнетоэлектрического переключения асимметрична: сдвигается либо к положительным, либо к отрицательным значениям напряжений в зависимости от знака A_2 — A_1 .

Если поле несколько ниже коэрцитивного значения, то равновесие все еще сохраняется, вторая производная от m_z в уравнении (9) достигает максимально возможного значения, примерно определяемого выражением

$$-K\frac{d}{dz}\left(\frac{\partial m_z}{\partial z}\right) \cong E_c P \cong \frac{U_c P}{d}.$$
 (17)

С учетом (17) динамическое уравнение (9) при сегнетоэлектрическом переключении ($U>U_c$) может быть еще более упрощено

$$\gamma \frac{dm_z}{dt} \cong P(E_z - E_c)(1 - m_z^2). \tag{18}$$

Это соответствует однородной модели вязкоупругого переключения, когда пренебрегают различиями ориентации **m** по толщине слоя. Уравнение (18) удобно представить в виде

$$\gamma^* \frac{dm_z}{dt} \cong PE_z(1 - m_z^2), \tag{19}$$

где $\gamma^*=rac{\gamma}{1-E_c/E_z}.$ В случае $E_c/E_z\ll 1$ эффективная вязкость $\gamma^*\cong\gamma$ должна иметь слабую зависимость как

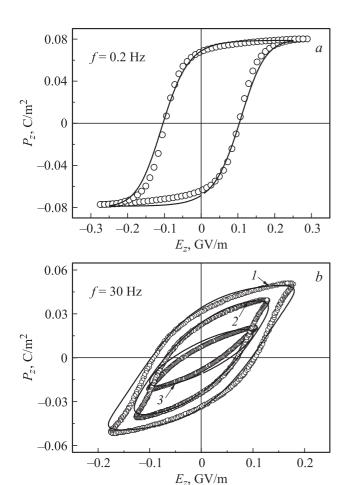


Рис. 2. Экспериментальные (точки) и модельные (сплошные линии) петли гистерезиса. $a-f=0.2\,\mathrm{Hz},\ \gamma=2\,\mathrm{MPa}\cdot\mathrm{s},\ E_{m,c}/E_m=-0.94,\ \varphi=-0.48;\ b-f=30\,\mathrm{Hz},\ \gamma=2\,\mathrm{MPa}\cdot\mathrm{s},\ E_{m,c}/E_m=-50$ (петля I), -40 (петля 2), -22 (петля 3), $\varphi=-2.1$.

от толщины пленки, так и от E_z . В работе [4] были определены значения эффективной вязкости для ПВДФ—ТрФЭ в зависимости от поля и толщины. В пределе больших полей эти значения действительно оказались близкими к константам, которые для разных образцов находятся в диапазоне 1.5–2.0 МРа·s. Эти значения можно рассматривать в качестве оценки вращательной вязкости γ в сегнетоэлектрическом сополимере ПВДФ—ТрФЭ состава 70:30.

Если внешнее поле является периодическим во времени $(E_z(t)=E_m\sin(\omega t))$, то и коэрцитивный вклад $E_c(t)$ в (18) будет периодической функцией, хотя и сдвинутой по фазе на некоторую величину φ , т.е. $E_c(t)=E_{m,c}\sin(\omega t+\varphi)$. Следует отметить, что в условиях периодического переключения нельзя считать фиксированным значение коэрцитивного поля, так как его величина в соответствии с (15) зависит от состояния вектора поляризации на границах пленки $(m_{z,0})$, который в свою очередь зависит от амплитуды E_m и частоты ω . Подставляя указанные периодические зависимости по-

левых вкладов в (18) и интегрируя, легко найти аналитическое выражение для зависимости z-компоненты единичного вектора поляризации от времени t

$$m_z(t) = \tanh\left(\frac{P}{\gamma\omega}\left[-E_m\cos(\omega t) - E_{m,c}\cos(\omega t + \varphi)\right]\right),$$

$$E_z(t) = E_m\sin(\omega t). \tag{20}$$

Если обе части первого уравнения (20) умножить на амплитуду переключаемой поляризации Р и представить эту зависимость графически как функцию мгновенного значения поля $E_{z}(t)$, исключив тем самым t, получим динамическую петлю гистерезиса $P_z(E_z)$, измеряемую в эксперименте, например, методом Сойера-Тауэра. На рис. 2 показаны экспериментальные и модельные петли гистерезиса для различных частот и амплитуд внешнего электрического поля. Как видно, теоретическая зависимость (20) очень хорошо описывает экспериментальные кривые с помощью единственного значения вращательной вязкости $\gamma = 2\,\mathrm{MPa\cdot s}$ для частот и амплитуд поля E_m . Интересно также отметить, что если на очень низких частотах ($F = 0.2\,\mathrm{Hz}$) коэрцитивный вклад действует почти в противофазе по отношению к внешнему периодическому полю, то с увеличением частоты появляется дополнительный фазовый сдвиг, близкий к $\pi/2$, а амплитуда коэрцитивного вклада увеличивается примерно пропорционально увеличению частоты поля. Обсуждение этих особенностей является предметом отдельной работы.

3. Заключение

Таким образом, предложенная вязкоупругая модель позволяет аналитически описывать амплитудночастотные характеристики гистерезисного переключения поляризации, используя единственное значение вращательной вязкости, которое является характеристикой сегнетоэлектрического полимерного материала.

Список литературы

- Л.М. Блинов, В.М. Фридкин, С.П. Палто, А.В. Буне, П.А. Даубен, С. Дюшарм. УФН 170, 247 (2000).
- [2] G.M. Vizdrik, S. Ducharme, V.M. Fridkin, S.G. Yudin. Phys. Rev. B 68, 094113 (2003).
- [3] V.M. Fridkin. J. Phys.: Cond Matter 16, 1 (2004).
- [4] V.V. Lazarev, L.M. Blinov, S.P. Palto, S.G. Yudin. Phys. Rev. B 82, 134 122 (2010).
- [5] А.Р. Гейвандов, С.П. Палто, С.Г. Юдин, Л.М. Блинов. ЖЭТФ. 126, 99 (2004).
- [6] L.M. Blinov. Structure and properties of liquid crystals. Springer, Dordrecht (2011). 439 p.