Магнитоэлектричество в керамике $PbFe_{1/2}Nb_{1/2}O_3$

© А.В. Турик 1 , А.В. Павленко 1 , К.П. Андрюшин 1 , С.И. Шевцова 1 , Л.А. Резниченко 1 , А.И. Чернобабов 2

Ростов-на-Дону, Россия

Пятигорск, Россия

E-mail: turik@sfedu.ru

Исследованы магнитодиэлектрический эффект (влияние магнитного поля H на диэлектрическую проницаемость ε) и магнитоэлектрический эффект (влияние электрического поля E на магнитоэлектрическую проницаемость α) керамики PbFe_{1/2}Nb_{1/2}O₃ в интервале температур T от 50 до 200°C, включающем точку Кюри $T_C \cong 98$ °C. Показана связь этих эффектов со сдвигом в магнитном поле температуры сегнетопараэлектрического фазового перехода.

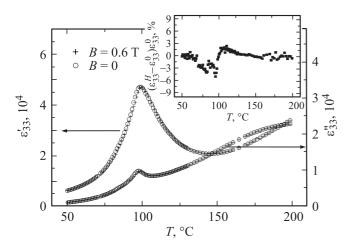
1. Введение

Феррониобат свинца $PbFe_{1/2}Nb_{1/2}O_3$ (PFN) — мультиферроик с сосуществующими электрическим и магнитным параметрами порядка [1,2]. Магнитодиэлектрический эффект (МДЭ) определяется как $\Delta \varepsilon / \varepsilon^0 =$ $=(\varepsilon^H-\varepsilon^0)/\varepsilon^0$ и является мерой относительного изменения комплексной диэлектрической проницаемости $\varepsilon = \varepsilon' - i \varepsilon''$ под действием магнитного поля $(\varepsilon^0$ и ε^H — диэлектрические проницаемости в отсутствие и в присутствии Н соответственно; обычно интересуются только изменением действительных частей ε). Величина МДЭ монокристаллов PFN очень мала $(\Delta \varepsilon/\varepsilon^0 \cong +0.2\%$ при 77° С и напряженности магнитного поля 1Т на частоте 105 Нz [3]). Большая величина МДЭ $(\Delta \varepsilon/\varepsilon^0 \cong -2.2\%$ при комнатной температуре и напряженности магнитного поля 0.76 Т) обнаружена во всем диапазоне частот от 20 до 10⁶ Hz в керамических образцах PFN [4]. Измерения МДЭ PFN вблизи температуры Кюри не проводились. В настоящей работе исследовано влияние H как на диэлектрическую (ε) , так и на магнитоэлектрическую ($\alpha = \partial D/\partial H$, D электрическая индукция) проницаемости керамики PFN в широком интервале температур T от 50 до 200° С, включающем точку Кюри $T_C \cong 98^{\circ}$ С.

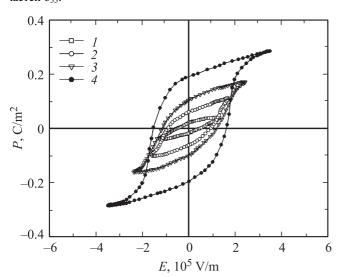
2. Методы получения и исследования образцов

Синтез образцов керамики PFN осуществлялся методом твердофазных реакций с использованием оксидов PbO, Fe_2O_3 и Nb_2O_5 высокой степени чистоты (ч, чда) обжигом в две стадии при температурах $T_1=T_2=850^{\circ}\mathrm{C}$ и временах выдержки $t_1=t_2=4\,\mathrm{h}$ с промежуточным помолом. Спекание керамических заготовок проводилось при $1100^{\circ}\mathrm{C}$ в течение $2\,\mathrm{h}$. По данным рентгенофазового и микроструктурного анализов, были получены однофазные беспримесные и практически не имеющие пор мелкозернистые (средний размер зерна $4-5\,\mu\mathrm{m}$) образцы PFN, имевшие при комнатной температуре ромбоэдрическую симметрию. Электронно-зондовый микроанализ спеченной керамики проводился на растровом

электронном микроскопе—микроанализаторе Камебаксмикро на основе статистических оценок интенсивности характеристического рентгеновского излучения $\mathrm{Fe}_{K\alpha}$ в случайных локальных точках.


Измерения действительной ε' и мнимой ε'' частей комплексной диэлектрической проницаемости ε в отсутствие (ε^0) и в присутствии (ε^H) постоянной магнитной индукции $B = \mu H = 0.6\,\mathrm{T}$ ($\mu \cong \mu_0 = 4\pi \cdot 10^{-7}\,\mathrm{H/m}$ магнитная проницаемость керамики PFN, μ_0 — магнитная проницаемость вакуума) проводились на механически свободных образцах PFN $\oslash 10\,\mathrm{x1}\,\mathrm{mm}$ при напряженности электрического поля $E=1\,\mathrm{V/mm}$ в диапазоне частот f от 0.5 до 500 kHz. Использовался специально сконструированный автоматический измерительный стенд, включавший прецизионный LCR-метр Agilent 4980А, катушку индуктивности, создающую постоянное магнитное поле, и специально разработанный программный комплекс "Kalipso v.2.0.0.27", позволяющий снимать магнитодиэлектрические спектры в автоматическом режиме.

3. Экспериментальные результаты и обсуждение


Температурные зависимости ε_{33}' и ε_{33}'' измерялись при параллельной $(\varepsilon_{\parallel}',\ \varepsilon_{\parallel}'',\ E_3\ \|\ H_3)$ и взаимно перпендикулярной $(\varepsilon'_{\perp},\ \varepsilon''_{\perp}$ для $E_3\perp H_1)$ ориентациях электрического и магнитного полей. Качественный вид полученных кривых мало зависит от взаимной ориентации Е и H, однако МДЭ более четко выражен для ε_{\perp}' , ε_{\perp}'' (рис. 1). Максимумы ε' и ε'' при температуре $T = T_C$ связаны с переходом из сегнетоэлектрической в параэлектрическую фазу [5] (в керамиках PFN, исследованных в [4,5], $T_C \approx 110^{\circ} \text{C}$). Сегнетоэлектрические свойства нашей керамики при комнатной температуре четко проявлялись при исследовании петель диэлектрического гистерезиса (рис. 2), насыщение которых достигалось при значительно меньших напряженностях электрических полей, чем для керамики PFN, полученной и исследованной в [4]. Остаточная поляризация насыщенных петель $P_R \ge 0.2 \, \text{C/m}^2$ также значительно больше, чем $P_R \cong 0.04 \, \text{C/m}^2$ для керамики [4].

 $^{^{1}}$ Научно-исследовательский институт физики Южного федерального университета,

² Пятигорский государственный технологический университет,

Рис. 1. Температурные зависимости действительных и мнимых частей ε_{33}^0 и ε_{33}^H керамики PFN на частоте 1 kHz при взаимно перпендикулярной ориентации измерительного электрического и постоянного магнитного полей. На вставке показаны температурные изменения МДЭ для действительных частей ε_{33} .

Рис. 2. Семейство петель гистерезиса керамики PFN на частоте 50 Hz при комнатной температуре при различных амплитудах напряжения U. Размеры образца Ø11.7 \times 1.2 mm. U, V: I — 100, 2 — 150, 3 — 200, 4 — 300.

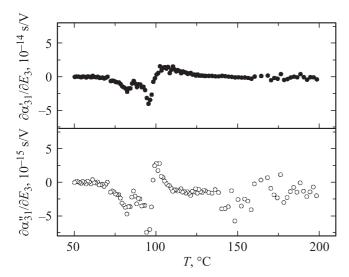
При $T>T_C$ на температурных зависимостях $\varepsilon^0(T)$ и $\varepsilon^H(T)$ формируются релаксационные экстремумы. Приложение к образцу магнитного поля H_3 или H_1 приводит к уменьшению ε^H_{33} по сравнению с ε^0_{33} при температурах ниже T_C (отрицательный МДЭ, $\Delta \varepsilon/\varepsilon^0 < 0$) и к увеличению ε^H_{33} при температурах выше T_C (положительный МДЭ, $\Delta \varepsilon/\varepsilon^0 > 0$). В отличие от [4], при $T < 70^{\circ}$ С МДЭ практически отсутствовал как в неполяризованных, так и в поляризованных образцах нашей керамики, что может быть связано с различной концентрацией ферромагнитных микропримесей. Отметим, что для кристаллов PFN при $T < T_C$ наблюдался только положительный МДЭ [3]; в керамиках PFN при $T = 27^{\circ}$ С и $T = 77^{\circ}$ С МДЭ был только отрицательным [4].

Для объяснения МДЭ предложен ряд моделей. Можно упомянуть модели антиферромагнитных спиновых флуктуаций [6], спин-зависимой поляризации вследствие накопления пространственного заряда [7], комбинацию эффектов магнитосопротивления и максвелл-вагнеровской релаксации [8], магнитострикции и электрострикции [9], возникновение эффекта Холла на шероховатых поверхностях металл-диэлектрик [10], изменение поляризации кислородных октаэдров вследствие взаимодействия магнитного поля с магнитными моментами ионов Fe [4]. Для керамики PFN нам представляется наиболее вероятной не рассматривавшаяся ранее модель, в которой МДЭ связывается со сдвигом ΔT_C в магнитном поле температуры сегнето-параэлектрического фазового перехода.

Для ВаТіО $_3$ $\Delta T_C=0.1-0.3^{\circ}$ С при B=10-20 Т [11,12]. В полупроводниковых сегнетоэлектриках смещение температуры Кюри в магнитном поле на один—два порядка больше, чем в ВаТіО $_3$ (например, в (PbGe) Те $\Delta T_C\cong 1^{\circ}$ С в поле B=3 Т [12]). В кристаллах DyMn $_2$ О $_5$ при $E\parallel b$ и $H\parallel a$ $\Delta T_C\cong -1^{\circ}$ С, а при $E\parallel b$ и $H\parallel b$ $\Delta T_C\cong +1^{\circ}$ С [13] (a и b — кристаллографические оси). Смещение ΔT_C связано с магнитоэлектрическим вкладом $-1/2\lambda_{ij}P_i^2M_j^2$ [14,15] в свободную энергию ($\lambda_{ij}=2C_{kl}Q_{e,ki}Q_{m,lj}$ — коэффициенты связи, C - модули упругости, Q_e и Q_m — электрострикционные и магнитострикционные коэффициенты, P_i и M_j — электрическая поляризация и намагниченность).

Этот вклад в мультиферроиках может быть значительно больше, чем в ВаТіО3. Усиление МДЭ в керамике PFN связано с обнаруженной при $T > 300 \, \mathrm{K}$ спонтанной намагниченностью M_s , которую объясняют присутствием слабого ферромагнетизма [16], возможно, вследствие микропримесей обладающего очень большой M_s гексаферрита свинца PbFe₁₂O₁₉ [17]. В исследованной нами керамике методом электронно-зондового микроанализа обнаружено наличие ферромагнитных включений магнетита Fe_2O_3 размером в несколько μm , локализованных между зернами основной фазы. Объемная доля включений, определенная по сколу и шлифу образца, составляла менее 0.2%. Знак λ определяется знаками Q_e и Q_m : при $\lambda_{ij} > 0$ знак МДЭ $\Delta \varepsilon / \varepsilon^0 < 0$, при $\lambda_{ij} < 0$ $\Delta \varepsilon / \varepsilon^0 > 0$. Особенно сильный МДЭ можно ожидать в поляризованных образцах вблизи частот пьезоэлектрических резонансов [7].

Для исследования влияния электрического поля E на магнитоэлектрическую проницаемость $\alpha = \partial D/\partial H$ использовались формулы [18]. Для взаимно перпендикулярной и параллельной ориентации электрического и магнитного полей


$$D_{3} = \varepsilon_{33}^{0} E_{3} + \alpha_{31} H_{1},$$

$$\partial D_{3} / \partial E_{3} = \varepsilon_{33}^{H} = \varepsilon_{33}^{0} + H_{1} \partial \alpha_{31} / \partial E_{3},$$

$$D_{3} = \varepsilon_{33}^{0} E_{3} + \alpha_{33} H_{3},$$

$$\partial D_{3} / \partial E_{3} = \varepsilon_{33}^{H} = \varepsilon_{33}^{0} + H_{3} \partial \alpha_{33} / \partial E_{3}.$$
(2)

Из (1) и (2) видно, что МДЭ обусловливает зависимость α_{31} и α_{33} от E_3 . Так как $\partial \varepsilon/\partial E = \partial^2 D/\partial E \partial H = \partial \varepsilon/\partial H$,

Рис. 3. Температурные зависимости действительной и мнимой частей $\partial \alpha_{31}/\partial E_3$ керамики PFN на частоте 1 kHz при взаимно перпендикулярной ориентации измерительного электрического и постоянного магнитного полей.

знак $\partial \alpha/\partial E$ определяется знаком МДЭ, то есть знаком $\partial \varepsilon/\partial H$. Величина и знак $\partial \varepsilon/\partial H$ вблизи T_C сильно зависят от температуры, причем $\partial \varepsilon/\partial H(T_C)\cong 0$.

Рассчитанные из (1) немонотонные температурные зависимости действительной и мнимой частей $\partial \alpha_{31}/\partial E_3$ на частоте 1 kHz показаны на рис. 3. В керамике PFN ΔT_C при $E \perp H$ больше ΔT_C при $E \parallel H$; поэтому МДЭ и особенности поведения $\Delta \varepsilon / \varepsilon^0$ и $\partial \alpha_{31}/\partial E_3(T)$ становятся более выраженными. Экстремальные значения МДЭ $(\Delta \varepsilon/\varepsilon_{\min}^0 = -(5.1 \pm 0.4)\%$ и $\Delta arepsilon / arepsilon_{
m max}^0 = + (2.0 \pm 0.4)\%$ на частоте 1 kHz) для действительных частей ε_{33} достигаются при температурах $T \cong 95^{\circ}$ С и $T \cong 107^{\circ}$ С. Соответствующие экстремальные значения $\partial \alpha_{31}/\partial E_{3 \, \min} \cong -4.3 \cdot 10^{-14} \, \text{s/V}$ и $\partial \alpha_{31}/\partial E_{3 \max}\cong +1.5\cdot 10^{-14}\,\mathrm{s/V}$. Качественный вид зависимостей $\Delta \varepsilon / \varepsilon^0(T)$ и $\partial \alpha_{31} / \partial E_3(T)$ мало изменяется при изменении частоты электрического поля. При $T\cong T_C$ $\Delta \varepsilon / \varepsilon^0$ и $\partial \alpha_{31} / \partial E_3$ керамики PFN проходят через нуль и изменяют знак. В параэлектрической фазе вдали от T_C (при $T \gg T_C$) МДЭ отрицателен.

Небольшой сдвиг T_C в сторону высоких температур можно наблюдать и на кривых $\varepsilon''(T)$. Поведение $\varepsilon''(H)$, качественно не отличается от поведения $\varepsilon'(H)$, причем в отличие от [4], знаки МДЭ для действительных и мнимых частей ε_{33} и $\partial \alpha_{31}/\partial E_3$ в нашей керамике были одинаковы. Температурная зависимость $\partial \alpha_{33}/\partial E_3$ качественно подобна показанной на рис. З температурной зависимости $\partial \alpha_{31}/\partial E_3$. Порядок величины магнитоэлектрической проницаемости $\alpha_{31}\cong\alpha_{33}\sim 10^{-9}$ s/m можно оценить из данных [19] для магнитоэлектрических коэффициентов $\alpha_{31E}\cong\alpha_{33E}=\partial E/\partial H\cong 1$ V/(Oe·m) на частоте 1 kHz и диэлектрической проницаемости $\varepsilon_{33}\cong 10^4$ керамики PFN.

Для точного определения смещения температуры Кюри керамики PFN в магнитном поле использовавшаяся

нами напряженность $H=0.6\,\mathrm{T}$ недостаточна. Поэтому ε_{33}^0 и ε_{33}^H близки по величине и погрешность определения $\partial \alpha/\partial E$ больше погрешности $\Delta \varepsilon/\varepsilon^0$. Однако на рис. 3 мы хотели показать область температур вблизи T_C , где зависимость α от E немонотонна и достаточно четко выражена. Выполненные расчеты показали, что количественное описание показанных на рис. 1 и 2 зависимостей возможно в предположении, что $\Delta T_C=0.5-0.6\,^{\circ}\mathrm{C}$ при $H=0.6\,\mathrm{T}$.

4. Заключение

Экспериментально исследованы МДЭ и магнитоэлектрический эффект в керамике PFN в интервале температур от 50 до 200° С, включающем точку Кюри $T_C\cong 98^{\circ}$ С, и в диапазоне частот от 0.5 до $500\,\mathrm{kHz}$. Предложено объяснение этих эффектов сдвигом ΔT_C в магнитном поле температуры сегнето-параэлектрического фазового перехода. Сдвиг ΔT_C связан с увеличением магнитоэлектрического вклада в свободную энергию благодаря наличию ферромагнитных включений магнетита $\mathrm{Fe_2O_3}$.

Список литературы

- [1] Г.А. Смоленский, И.Е. Чупис. УФН 137, 415 (1982).
- [2] H. Schmid. J. Phys.: Cond. Matter **20**, 434 201 (2008).
- [3] J.T. Wang, C. Zhang, Z.X. Shen, Y. Feng. Ceramics International **30**, 1627 (2004).
- [4] O. Raymond, R. Font, J. Portelles, J.M. Siqueiros. J. Appl. Phys. 109, 094106 (2011).
- [5] O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros. J. Appl. Phys. 97, 084 108 (2005).
- [6] N. Imamura, K. Singh, D. Pelloquin, Ch. Simon, T. Sasagawa, M. Karppinen, H. Yamauchi, A. Maignan. Appl. Phys. Lett. 88, 102 902 (2006).
- [7] Y. Chen, X-Y. Zhang, C. Vittoria, V.G. Harris. Appl. Phys. Lett. 94, 102 906 (2009).
- [8] G. Catalan. Appl. Phys. Lett. 98, 102 902 (2006).
- [9] H.Y. Hwang, S-W. Cheong, N. Ong, B. Batlogg. Phys. Rev. Lett. 77, 2041 (1996).
- [10] R. Pirc, R. Blinc, J.F. Scott. Phys. Rev. B 79, 214114 (2009).
- [11] D. Wagner, D. Bäuerle. Phys. Lett. A 83, 347 (1981).
- [12] И.Е. Чупис. ФТТ **45**, 1225 (2003).
- [13] N. Hur, S. Park, P.A. Sharma, S. Guha, S-W. Cheong. Phys. Rev. Lett. 93, 107 907 (2004).
- [14] A. Kumar, G.L. Sharma, R.S. Katiyar, R. Pirc, R. Blinc, J.F. Scott. J. Phys.: Cond. Matter **21**, 382 204 (2009).
- [15] S.J. Gong, Q. Jiang. Phys. Lett. A 333, 124 (2004).
- [16] R. Blinc, P. Cevc, A. Zorko, J. Holc, M. Kosec. J. Appl. Phys. 101, 033 901 (2007).
- [17] И.О. Троянчук, М.В. Бушинский, А.Н. Чобот, О.С. Мантыцкая, Н.В. Пушкарев, Р. Шимчак. ЖЭТФ **134**, 291 (2008).
- [18] А.В. Турик, А.И. Чернобабов, М.Ю. Родинин. ФТТ **51**, 1580 (2009).
- [19] D. Bochenek, P. Guzdek. J. Magn. Magn. Mater. 53, 369 (2011).