01:03:04

Импульс давления в жидком проводнике цилиндрической формы, вызываемый импульсом электрического тока

© В.М. Коровин

Институт механики Московского государственного университета им. М.В. Ломоносова, 119192 Москва, Россия e-mail: korovin@imec.msu.ru

(Поступило в Редакцию 11 октября 2004 г.)

Рассмотрен аналог z-пинча для жидкости конечной проводимости, заполняющей цилиндрическую неэлектропроводную трубку, вдоль которой по жидкости проходит экспоненциально затухающий с ростом времени импульс переменного электрического тока. На базе уравнений квазистационарного электромагнитного поля и магнитогидростатики с использованием операционного метода найдены распределения магнитной индукции, плотности тока и давления, создаваемого объемной электромагнитной силой в жидком проводящем цилиндре.

Введение

Один из способов контроля степени загрязнения расплавленных металлов инородными включениями (в частности, неэлектропроводными твердыми частицами) основан на применении импульсов электрического тока, проходящих сквозь пробный образец неподвижной жидкости, находящейся в длинной цилиндрической неэлектропроводной трубке [1]. Функционирование подобного устройства базируется на использовании электромагнитной силы Архимеда, действующей на инородные включения в токонесущей жидкости.

Своим происхождением электромагнитная сила Архимеда обязана перераспределению исходного (в отсутствие тока) давления ввиду воздействия на жидкость объемной электромагнитной силы, возникающей за счет взаимодействия электрического тока с собственным магнитным полем (сила Лоренца). При этом электромагнитнтая сила Архимеда выталкивает из жидкости частицы, проводимость которых меньше проводимости окружающей токонесущей жидкости, тогда как частицы с большей, чем у жидкости, проводимостью под действием этой силы погружаются в глубь жидкости [2]. На величину и направление электромагнитной силы Архимеда гравитационное поле, естественно, не оказывает влияния.

В случае стационарного осесимметричного распределения плотности тока в жидкометаллическом цилиндре распределения электромагнитного поля и создаваемого силой Лоренца давления описываются точным решением уравнений магнитной гидродинамики, используемым в теории *z*-пинча [3–6].

Для частиц простой формы (шар, цилиндр) с использованием выражения для давления, создаваемого проходящим по жидкому цилиндру однородным электрическим током, результаты вычисления электромагнитной силы Архимеда в первом приближении (без учета вызываемого частицей искажения электромагнитного поля) приведены в [2,7].

Известно, что при прохождении переменного тока достаточно высокой частоты происходит концентрация тока вблизи поверхности проводника (скин-эффект [3,8]). Неоднородное распределение плотности тока по сечению проводника может возникать и в случае одиночного импульса. Ввиду этого при вычислении электромагнитной силы Архимеда важным моментом оказывается нахождение распределения нестационарного электромагнитного поля в жилкометаллическом пилиндре.

В данной работе в рамках уравнений квазистационарного электромагнитного поля и магнитогидростатики найдены выражения для индукции, плотности тока и давления в жидком проводящем цилиндре с электрическим током, интегральная (по сечению цилиндра) сила которого экспоненциально уменьшается с возрастанием времени.

Постановка задачи

Пусть имеется длинная цилиндрическая неэлектропроводная трубка с закрытыми торцевыми сечениями, полностью заполненная однородной проводящей жидкостью, находящейся в состоянии покоя. Начиная с момента времени t=0 сквозь жидкость в осевом направлении пропускается электрический ток. Предполагается, что интегральная по сечению жидкого цилиндра сила тока изменяется со временем по закону

$$g(t) = I \exp(-\alpha t) \cos \omega t, \quad I > 0, \quad \alpha > 0.$$
 (1)

При записи уравнений будем пользоваться цилиндрической системой координат r, φ, z , ось z которой является осью трубки и имеет одинаковое направление с током. Пренебрегая влиянием торцевых сечений, через которые осуществляется подвод электрического тока к жидкости, будем считать, что искомые функции (магнитная индукция $\mathbf{B} = (0, B, 0)$, плотность тока $\mathbf{j} = (0, 0, j)$ и создаваемое импульсом тока давление p_e зависят от переменных r, t.

1 1

2 В.М. Коровин

Рассматриваемая система представляет равновесную магнитогидродинамическую конфигурацию — z-пинч [3–6], поскольку объемная плотность силы Лоренца $\mathbf{j} \times \mathbf{B}$ потенциальна и имеет лишь радиальную составляющую, действие которой на жидкость уравновешивается градиентом нестационарной части давления $p_e(r,t)$. Полное давление в жидкости, представляющее сумму p_e и гидродинамического давления, зависит, естественно, от ориентации трубки относительно вертикали и в общем случае является функцией r, φ, z, t .

Распределения индукции и плотности тока и нестационарная часть давления в жидком цилиндре описываются уравнениями [3]

$$\frac{\partial B}{\partial t} = \nu \left(\frac{\partial^2 B}{\partial r^2} + \frac{1}{r} \frac{\partial B}{\partial r} - \frac{B}{r^2} \right), \tag{2}$$

$$j = \frac{1}{\mu_0 r} \frac{\partial (rB)}{\partial r},\tag{3}$$

$$\frac{\partial p_e}{\partial r} = -jB. \tag{4}$$

Здесь $\nu=(\mu_0\sigma)^{-1}$ — магнитная вязкость, $\mu_0=4\pi\times 10^{-7}$ Н/m — магнитная постоянная, σ — проводимость жидкости. После расчета плотности тока электрическое поле ${\bf E}=(0,0,E)$ вычисляется из закона Ома $j=\sigma E$.

В начальный момент времени магнитное поле внутри жидкого цилиндра отсутствует:

$$B(r,0) = 0. (5)$$

Запишем краевое условие для индукции на поверхности жидкого цилиндра. Для этого воспользуемся тем обстоятельством, что известен полный ток, протекающий по цилиндру. Из дифференциальной формы закона Ампера (3) с учетом (1) имеем

$$B(c,t) = \frac{\mu_0}{2\pi c} I \exp(-\alpha t) \cos \omega t, \tag{6}$$

где c — радиус жидкого цилиндра.

Задача о расчете индукции (2), (5), (6) относится к классу задач с разрывными начальными условиями [8]. Эта задача описывает диффузию магнитного поля поперек проводящего цилиндра, когда в начальный момент времени t=0 создаваемый внешним источником электрический ток силы I сконцентрирован на боковой поверхности цилиндра r=c, ввиду чего при r=c, t=0 касательная составляющая магнитного поля (в рассматриваемом случае полное поле) претерпевает разрыв.

Распределения электромагнитного поля и давления

Для решения начально-краевой задачи (2), (5), (6) применим операционный метод [9]. Пусть \mathscr{L} — оператор преобразования Лапласа (по времени), s — параметр этого преобразования. Введем обозначение $\mathscr{L}[B(r,t)] = \mathscr{B}(s,r)$. Переходя в уравнении индукции (2)

и в краевом условии (6) к изображениям, с учетом начального условия (5) получаем

$$\begin{split} \frac{d^2\mathcal{B}}{dr^2} + \frac{1}{r} \frac{d\mathcal{B}}{dr} - \left(\frac{s}{v} + \frac{1}{r^2}\right) \mathcal{B} &= 0, \\ \mathcal{B}|_{r=c} &= \frac{\mu_0 I}{2\pi c} \frac{s + \alpha}{(s + \alpha)^2 + \omega^2} \,. \end{split}$$

После замены переменной $u=i\lambda r,\ \lambda=\sqrt{s/\nu},\$ где i — мнимая единица, имеем

$$\frac{d^2\mathcal{B}}{du^2} + \frac{1}{u} \frac{d^2\mathcal{B}}{du} + (u^2 - 1)\mathcal{B} = 0,$$

$$\mathcal{B}\big|_{u=i\lambda c} = \frac{\mu_0 I}{2\pi c} \frac{s+\alpha}{(s+\alpha)^2 + \omega^2}.$$
(7)

Частными решениями дифференциального уравнения (7) являются [9] функции Бесселя первого рода $J_1(u)$ и второго рода $Y_1(u)$, однако условию ограниченности при u=0 удовлетворяет лишь функция $J_1(u)$. Ввиду этого $\mathcal{B}=AJ_1(u)$, где A — произвольная константа. Из краевого условия (7) находим

$$A = \frac{\mu_0 I}{2\pi c} \frac{s + \alpha}{(s + \alpha)^2 + \omega^2} \frac{1}{J_1\left(i\sqrt{\frac{s}{\nu}}c\right)}.$$

Таким образом, решение операторной задачи (7) имеет вид

$$\mathscr{B}(s,u) = \frac{\mu_0 I}{2\pi c} \frac{s+\alpha}{(s+\alpha)^2 + \omega^2} \frac{J_1\left(i\sqrt{\frac{s}{\nu}}r\right)}{J_1\left(i\sqrt{\frac{s}{\nu}}c\right)}.$$
 (8)

Функция $\mathcal{B}(s,r)$, определенная равенством (8), однозначна относительно s. Согласно теореме разложения, известной из теории обратного преобразования Лапласа [9], оригинал B(r,t) записывается в виде суммы вычетов функции $\mathcal{B}(s,r)$ ехр(st), вычисленных во всех полюсах функции $\mathcal{B}(s,r)$. Легко видеть, что функция $\mathcal{B}(s,r)$ имеет бесчисленное множество полюсов первого порядка. В комплексной области s полюсами являются точки $s_{01}=-\alpha+i\omega,\ s_{02}=-\alpha-i\omega,\$ а также точки $s_k=-\nu\beta_k^2/c^2\ (k=1,2,3,\ldots)$, определяемые корнями β_k уравнения $J_1(u)=0$, причем точка s=0 не является полюсом.

Несложные вычисления, связанные с нахождением оригинала B(r,t), приводят к результату

$$B(r,t) = \frac{\mu_0 I}{4\pi c} \left\{ \frac{J_1\left(\sqrt{\frac{-\alpha+i\omega}{\nu}}ir\right)}{J_1\left(\sqrt{\frac{-\alpha+i\omega}{\nu}}ic\right)} \exp\left[(-\alpha+i\omega)t\right] + \frac{J_1\left(\sqrt{\frac{-\alpha-i\omega}{\nu}}ir\right)}{J_1\left(\sqrt{\frac{-\alpha-i\omega}{\nu}}ic\right)} \exp\left[-(\alpha+i\omega)t\right] + 4\sum_{k=1}^{\infty} \frac{\beta_k(\beta_k^2 - \xi^2)}{(\beta_k^2 - \xi^2)^2 + (\omega\tau_m)^2} \frac{J_1\left(\frac{\beta_k r}{c}\right)}{J_1'(\beta_k)} \exp\left(-\frac{\alpha\beta_k^2}{\xi^2}t\right) \right\},$$
(9)

где $\tau_m = c^2/\nu$ — характерное время диффузии магнитного поля [6], $\xi = \sqrt{\alpha \tau_m}$.

В полученном выражении первое и воторое слагаемые представляют соответственно вычеты в полюсах s_{01} и s_{02} , а член ряда с номером n представляет вычет в полюсе s_n .

Обращаясь к выражению (9) легко записать установившееся распределение индукции в жидком цилиндре, по которому проходит переменный ток частоты ω (случай $\alpha=0,\,t\to\infty$)

$$B(r,t) = \frac{\mu_0 I}{4\pi c} \left\{ \frac{J_1 \left[\frac{r}{\delta} \exp\left(\frac{3\pi i}{4}\right)\right]}{J_1 \left[\frac{c}{\delta} \exp\left(\frac{3\pi i}{4}\right)\right]} \exp(i\omega t) + \frac{J_1 \left[\frac{r}{\delta} \exp\left(\frac{5\pi i}{4}\right)\right]}{J_1 \left[\frac{c}{\delta} \exp\left(\frac{5\pi i}{4}\right)\right]} \exp(-i\omega t) \right\}, \tag{10}$$

где $\delta = \sqrt{\nu/\omega}$ — характерная глубина проникновения электромагнитного поля в проводник [3].

С использованием функций Келивина $ber_n(z)$, $bei_n(z)$, определяемых соотношениями [10]

$$ber_n(z) \pm i \ bei_n(z) = J_n \left[z \exp\left(\pm \frac{3\pi i}{4}\right) \right];$$

 $n = 0, 1, 2, \dots,$

выражение (10) представляется в следующем виде:

$$B(r,t) = \frac{\mu_0 I}{2\pi c}$$

$$\times \left\{ \frac{ber_1\left(\frac{c}{\delta}\right)ber_1\left(\frac{r}{\delta}\right) + bei_1\left(\frac{c}{\delta}\right)bei_1\left(\frac{r}{\delta}\right)}{\left[ber_0'\left(\frac{c}{\delta}\right)\right]^2 + \left[bei_0'\left(\frac{c}{\delta}\right)\right]^2} \cos \omega t + \frac{bei_1\left(\frac{c}{\delta}\right)ber_1\left(\frac{r}{\delta}\right) - ber_1\left(\frac{c}{\delta}\right)bei_1\left(\frac{r}{\delta}\right)}{\left[ber_0'\left(\frac{c}{\delta}\right)\right]^2 + \left[bei_0'\left(\frac{c}{\delta}\right)\right]^2} \sin \omega t \right\}.$$
(11)

В результате подстановки распределения индукции (11) в уравнение (3) с учетом рекуррентных соотношений для функций Кельвина [11] находим установившуюся плотность переменного тока в жидком цилиндре

$$j(r,t) = \frac{I}{2\pi c \delta}$$

$$\times \left\{ \frac{bei_0'\left(\frac{c}{\delta}\right)ber_0\left(\frac{r}{\delta}\right) - ber_0'\left(\frac{c}{\delta}\right)bei_0\left(\frac{r}{\delta}\right)}{\left[ber_0'\left(\frac{c}{\delta}\right)\right]^2 + \left[bei_0'\left(\frac{c}{\delta}\right)\right]^2} \cos \omega t - \frac{bei_0'\left(\frac{c}{\delta}\right)bei_0\left(\frac{r}{\delta}\right) + ber_0'\left(\frac{c}{\delta}\right)ber_0\left(\frac{r}{\delta}\right)}{\left[ber_0'\left(\frac{c}{\delta}\right)\right]^2 + \left[bei_0'\left(\frac{c}{\delta}\right)\right]^2} \sin \omega t \right\}.$$

С точностью до обозначений формула (12) совпадает с выражением, полученным другим путем в [8] при вычислении распределения переменного тока по сечению бесконечного однородного цилиндрического провода.

Далее будем рассматривать экспоненциально затухающий импульс тока (случай $\omega=0$). Обращаясь к (3), (8), (9), имеем

$$\mathscr{B}(s,r) = \frac{\mu_o I}{2\pi c (s+\alpha)} \frac{J_1\left(i\sqrt{\frac{s}{\nu}}r\right)}{J_1\left(i\sqrt{\frac{s}{\nu}}c\right)},\tag{13}$$

$$B(r,t) = \frac{\mu_0 I}{\pi c} \left[\frac{J_1\left(\frac{\xi r}{c}\right)}{2J_1(\xi)} \exp(-\alpha t) + \sum_{k=1}^{\infty} \frac{\beta_k}{\beta_k^2 - \xi^2} \frac{J_1\left(\frac{\beta_k}{c}r\right)}{J_1'(\beta_k)} \exp\left(-\frac{\alpha \beta_k^2}{\xi^2}t\right) \right], \quad (14)$$

$$j(r,t) = \frac{I}{\pi c^2} \left[\frac{\xi}{2} \frac{J_0\left(\frac{\xi r}{c}\right)}{J_1(\xi)} \exp(-\alpha t) \right]$$

$$+\sum_{k=1}^{\infty} \frac{\beta_k^2}{\beta_k^2 - \xi^2} \frac{J_0\left(\frac{\beta_k r}{c}\right)}{J_1'(\beta_k)} \exp\left(-\frac{\alpha \beta_k^2}{\xi^2}t\right) \right]. \quad (15)$$

В случае экспоненциально затухающего по времени импульса тока величина $\xi^2 = \alpha \tau_m$ представляет отношение характерного времени диффузии магнитного поля $\tau_m = c^2/\nu$ к характерной длительности импульса $\tau_p = \alpha^{-1}$.

Распределение индукции (14) и плотности тока (15) по сечению проводника применимы лишь в том случае, когда все полюсы операторного решения (13) имеют первый порядок, т.е. при $\alpha \neq s_k; \ k=1,2,3,\ldots$. Если же для какого-нибудь индекса k (например, k=n) имеет место равенство $\xi=\beta_n$ (т.е. точка $s=-\alpha$ является полюсом второго порядка), то обращение выражения (13) приводит к результату

$$B(r,t) = \frac{\mu_0 I}{2\pi c} \left\{ \left[\frac{r}{c} \frac{J_0\left(\frac{\beta_n r}{c}\right)}{J_1'(\beta_n)} - \frac{J_1\left(\frac{\beta_n r}{c}\right)}{\beta_n J_1'(\beta_n)} \left(1 + \frac{2\beta_n^2 t}{\tau_m} \right) \right] \exp\left(-\frac{\beta_n^2 t}{\tau_m}\right) + \sum_{k=1}^{\infty} \frac{\beta_k}{\beta_k^2 - \beta_n^2} \frac{J_1\left(\frac{\beta_k r}{c}\right)}{J_1'(\beta_k)} \exp\left(-\frac{\beta_k^2 t}{\tau_m}\right) \right\}. \quad (16)$$

Здесь и далее штрих у знака суммы показывает, что при суммировании исключается индекс k=n. С помощью (16) и (3) при $\alpha=\beta_n^2/\tau_m$ находим

$$j(r,t) = \frac{I}{2\pi c^2} \left\{ \left[\frac{J_0\left(\frac{\beta_n r}{c}\right)}{J_1'(\beta_n)} \left(1 - \frac{2\beta_n^2 t}{\tau_m} \right) - \frac{r}{c} \frac{\beta_n J_1\left(\frac{\beta_n r}{c}\right)}{J_1'(\beta_n)} \right] \exp\left(-\frac{\beta_n^2 t}{\tau_m} \right) + \sum_{k=1}^{\infty} \frac{\beta_k^2}{\beta_k^2 - \beta_n^2} \frac{J_0\left(\frac{\beta_k r}{c}\right)}{J_1'(\beta_k)} \exp\left(-\frac{\beta_k^2 t}{\tau_m} \right) \right\}.$$
 (17)

Поскольку нули β_k $(k=1,2,3,\ldots)$ функции Бесселя $J_1(u)$ существенно возрастают с увеличением номера k [11], то при t>0 фигурирующие в (14), (15)

4 В.М. Коровин

ряды быстро сходятся и, начиная с некоторого момента времени, первые члены рядов преобладают над суммами остальных членов. Ввиду этого при $\xi \neq \beta_k$ (k = 1, 2, 3, ...) развитая стадия процесса прохождения импульса тока описывается упрощенными формулами (14), (15), в которых помимо членов, пропорциональных $\exp(-\alpha t)$, требуется учитывать лишь первые члены рядов, содержащие $\beta_1 = 3.8317$.

Результат дальнейшего упрощения выражений (14), (15) зависит от величины безразмерного параметра $\xi = \sqrt{\tau_m/\tau_p}$. В случае $\xi < \beta_1$ для развитой стадии процесса прохождения импульса имеем

$$B(r,t) = \frac{\mu_0 I}{2\pi c} \frac{J_1\left(\frac{\xi_r}{c}\right)}{J_1(\xi)} \exp(-\alpha t),$$

$$j(r,t) = \frac{\xi I}{2\pi c^2} \frac{J_0\left(\frac{\xi_r}{c}\right)}{J_1(\xi)} \exp(-\alpha t). \tag{18}$$

С учетом (18) из уравнения магнитогидростатики (4) находится распределение давления в жидком проводнике, создаваемое силой Лоренца,

$$p_e(r,t) = p_w + \frac{\mu_0 I^2}{8\pi^2 c^2} \frac{J_0^2(\frac{\xi r}{c}) - J_0^2(\xi)}{J_1^2(\xi)} \exp(-2\alpha t), \quad (19)$$

где p_w — давление на стенке трубки (при r=c). В случае импульса большой длительности ($\varepsilon=$ $= \xi^2 \ll 1$) с использованием представлений функций Бесселя в виде степенных рядов [11] легко выписать главные члены разложений формул (18), (19) по степеням малого параметра ε

$$B(r,t) = \frac{\mu_0 r}{2} j(t), \quad j(t) = j_0 \exp(-\alpha t), \quad j_0 = \frac{I}{\pi c^2},$$

$$p_e(r,t) = p_w + \frac{\mu_0 c^2 j_0^2}{4} \left[1 - \left(\frac{r}{c}\right)^2 \right] \exp(-2\alpha t). \quad (20)$$

Представляемое первой из формул (20) распределение индукции является, естественно, обобщением на квазистационарный случай соответствующего выражения для цилиндрического проводника, по которому протекает электрический ток постоянной плотности.

В случае $\xi = \beta_1$, обращаясь к выражениям (16), (17), для развитой стадии процесса прохождения импульса получаем

$$B(r,t) = \frac{\mu_0 I}{2\pi c} \left[\frac{r}{c} \frac{J_0\left(\frac{\beta_1 r}{c}\right)}{J_1'(\beta_1)} - \frac{J_1\left(\frac{\beta_1 r}{c}\right)}{\beta_1 J_1'(\beta_1)} \left(1 + \frac{2\beta_1^2 t}{\tau_m}\right) \right] \exp\left(-\frac{\beta_1^2 t}{\tau_m}\right),$$

$$j(r,t) = \frac{I}{2\pi c^2} \left[\frac{J_0\left(\frac{\beta_1 r}{c}\right)}{J_1'(\beta_1)} \left(1 - \frac{2\beta_1^2 t}{\tau_m}\right) - \frac{r}{c} \frac{\beta_1 J_1\left(\frac{\beta_1 r}{c}\right)}{J_1'(\beta_1)} \right] \exp\left(-\frac{\beta_1^2 t}{\tau_m}\right). \tag{21}$$

После подстановки выражений (21) в уравнение магнитогидростатики (4) имеем

$$\frac{\partial p_e}{\partial r} = \frac{\mu_0 I^2}{4\pi^2 c^3} \frac{\exp(-\frac{2\beta_1^2 t}{\tau_m})}{\left[J_1'(\beta_1)\right]^2} \left[J_0\left(\frac{\beta_1 r}{c}\right) J_1\left(\frac{\beta_1 r}{c}\right) \right] \\
\times \left(\frac{1}{\beta_1} - \frac{4\beta_1^3 t^2}{\tau_m^2} + \frac{\beta_1 r^2}{c^2}\right) - \frac{r}{c} J_0^2\left(\frac{\beta_1 r}{c}\right) \\
\times \left(1 - \frac{2\beta_1^2 t}{\tau_m}\right) - \frac{r}{c} J_1^2\left(\frac{\beta_1 r}{c}\right) \left(1 + \frac{2\beta_1^2 t}{\tau_m}\right) \right].$$

С учетом известной формулы интегрирования [12, № 5.54.2] второго и третьего слагаемых в правой части этого уравнения находим

$$p_{e}(r,t) = p_{w} + \frac{\mu_{0}I^{2}}{4\pi^{2}c^{2}} \frac{\exp\left(-\frac{2\beta_{1}^{2}t}{\tau_{m}}\right)}{[J'_{1}(\beta_{1})]^{2}}$$

$$\times \left\{ \frac{r}{\beta_{1}c} J_{0} \left(\frac{\beta_{1}r}{c}\right) J_{1} \left(\frac{\beta_{1}r}{c}\right) \left(1 + \frac{2\beta_{1}^{2}t}{\tau_{m}}\right) - \left(\frac{r}{c}\right)^{2} \left[J_{0}^{2} \left(\frac{\beta_{1}r}{c}\right) + \frac{1}{2}J_{1}^{2} \left(\frac{\beta_{1}r}{c}\right)\right] + [J'_{1}(\beta_{1})]^{2}$$

$$+ \frac{1}{2\beta_{1}^{2}} \left(1 - \frac{4\beta_{1}^{4}t^{2}}{\tau_{m}^{2}}\right) \left[\left(J'_{1}(\beta_{1})\right)^{2} - J_{0}^{2} \left(\frac{\beta_{1}r}{c}\right)\right] \right\}. \quad (22)$$

Аналогично случаю $\xi < \beta_1$ при $\xi > \beta_1$ с помощью (4), (14), (15) получаем

$$B(r,t) = \frac{\beta_1 \mu_0 I}{\pi c (\beta_1^2 - \xi^2)} \frac{J_1(\frac{\beta_1 r}{c})}{J_1'(\beta_1)} \exp\left(-\frac{\alpha \beta_1^2}{\xi^2} t\right),$$

$$j(r,t) = \frac{\beta_1^2 I}{\pi c^2 (\beta_1^2 - \xi^2)} \frac{J_0(\frac{\beta_1 r}{c})}{J_1'(\beta_1)} \exp\left(-\frac{\alpha \beta_1^2}{\xi^2} t\right),$$

$$p_e(r,t) = p_w + \frac{\beta_1^2 \mu_0 I^2}{2\pi^2 c^2 (\beta_1^2 - \xi^2)^2}$$

$$\times \left\{ \frac{J_0^2(\frac{\beta_1 r}{c})}{[J_1'(\beta_1)]^2} - 1 \right\} \exp\left(-\frac{2\alpha \beta_1^2}{\xi^2} t\right). \tag{23}$$

Таким образом, при прохождении импульса электрического тока $g(t) = I \exp(-\alpha t)$, начная с некоторого момента времени, распределения электромагнитного поля и давления в общем случае выходят на регулярный режим, при котором характерные формы профилей индукции, плотности тока и давления (18)–(20), (23) не изменяются во времени, а их амплитуды убывают по экспоненте с возрастанием времени. При этом показатель экспоненты зависит от безразмерного параметра $\xi = \sqrt{\tau_m/\tau_p}$. В особом случае при $\xi = \beta_1$, как видно из формул (21), (22), регулярный режим не реализуется.

Заключение

В рамках уравнения индукции с применением преобразования Лапласа по времени решена осесимметричная задача с разрывным начальным условием о распределении электромагнитного поля в жидком проводнике цилиндрической формы, вдоль которого проходит импульс затухающего переменного электрического тока, интегральная (по сечению проводника) амплитуда которого экспоненциально убывает с возрастанием времени.

В частном случае незатухающего переменного тока полученный результат в наших обозначениях совпадает с решением задачи о скин-эффекте [8].

Для экспоненциально убывающего по времени импульса тока, характерная длительность которого τ_p много больше характерного времени диффузии магнитного поля поперек жидкого цилиндра τ_m , главный член разложения найденного решения по степеням малого параметра $\varepsilon = \tau_m/\tau_p$ представляет обобщение на квазистационарный случай формулы, описывающей распределение магнитной индукции в цилиндрическом проводнике, по которому проходит электрический ток постоянной плотности.

С использованием уравнения магнитогидростатики найдено распределение давления в жидком цилиндре, создаваемого экспоненциально убывающим по времени импульсом тока.

Для экспоненциально убывающего импульса тока показано, что, начиная с некоторого момента времени, в общем случае распределения электромагнитного поля и давления выходят на регулярный режим, при котором характерные формы профилей индукции, плотности тока и давления не изменяются во времени, а их амплитуды убывают по экспоненте с возрастанием времени. При этом показатели экспонент зависят от безразмерного параметра $\xi = \sqrt{\varepsilon}$.

Установлено, что в особом случае, когда $\xi = \beta_1$, где β_1 — первый нетривиальный нуль функции Бесселя $J_1(z)$, регулярный режим не реализуется.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 02-01-00694).

Список литературы

- [1] Makarov S., Ludwig R., Resnik J., Apelian D. // J. Nondestruct. Eval. 1999. Vol. 18. N 13. P. 99–102.
- [2] Бояревич В.В., Фрейберг Я.Ж., Шилова Е.И., Щербинин Э.В. Электровихревые течения. Рига: Зинатне, 1985. 315 с.
- [3] *Ландау Л.Д., Лифшиц Е.М.* Электродинамика сплошных сред. М.: Наука, 1992. 661 с.
- [4] Арцимович Л.А. Управляемые термоядерные реакции. М.: ГИФМЛ, 1961. 468 с.
- [5] Шеклиф Дж. Курс магнитной гидродинамики. М.: Мир, 1967. 320 с.
- [6] Джексон Дж. Классическая электродинамика. М.: Мир, 1965. 702 с.

- [7] Шилова Е.И. // Магнитная гидродинамика. 1975. № 2. С. 142–144.
- [8] Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1966. 724 с.
- [9] Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1973. 736 с.
- [10] Янке Е., Эмде Ф., Леш Ф. Специальные функции. М.: Наука, 1964. 344 с.
- [11] Справочник по специальным функциям / Под ред. М. Абрамовица, И. Стиган. М.: Мир, 1979. 830 с.
- [12] *Градитейн И.С., Рыжик И.М.* Таблицы интегралов, сумм, рядов и произведений. М.: Наука, 1971. 1108 с.