01:05:09:10

Ориентационная зависимость выхода некогерентного излучения в кристаллах

© А.Х. Хоконов, М.Х. Хоконов, К.В. Эфендиев

Кабардино-Балкарский государственный университет, 360004 Нальчик, Россия e-mail: khokon6@mail.ru

(Поступило в Редакцию 4 августа 2004 г.)

Методом численного моделирования изучена ориентационная зависимость выхода некогерентного тормозного излучения, возникающего при движении ультрарелятивистских электронов с энергией 1.2 GeV вблизи атомных цепочек кристаллов. Показано, что распределение электронов по числу близких соударений с атомами кристалла существенно отличается от распределения Пуассона. Проводится детальное сравнение с экспериментами.

Пространственное перераспределение потока электронов [1,2], движущихся в режиме каналирования, приводит к увеличению сечений взаимодействия (рассеяния, тормозного излучения) их с атомами кристалла по сравнению с аморфной мишенью. В частности, эффект усиления тормозного излучения (ТИ) из ориентированного кристалла вольфрама для электронов с энергией 3 GeV использовался недавно [3] для увеличения выхода электрон-позитронных пар из аморфной мишени, установленной за кристаллом. В более ранних экспериментальных работах [4,5] наблюдалось увеличение ТИ электронов с энергией 1.2 GeV в кристалле кремния, ориентированном относительно оси (110).

Теория ТИ в ориентированных кристаллах (ОК) рассматривалась многими авторами [6-8]. Было установлено, что сечение некогерентного ТИ может быть представлено в виде $\sigma_c(\omega, r) = \sigma_{am}(\omega) P(r)$, где $\sigma_{am}(\omega)$ есть сечение ТИ в аморфном веществе, а функция P(r) не зависит от частоты излучения ω и определяет зависимость от расстояния между электроном и атомной цепочкой r [9,10]. Такой вид сечения излучения означает, что увеличение интенсивности ТИ в кристалле не будет зависеть от энергии излучаемых фотонов, что согласуется с результатами экспериментов. В работе [9] рассчитано сечение ТИ в кристалле $\sigma_c(\omega, r)$ методом виртуальных фотонов и приведено детальное сравнение с результатами других авторов. В настоящей работе приводятся результаты численного моделирования выхода ТИ в толстых кристаллах кремния с учетом деканалирования и анализируется ориенитационная зависимость эффекта его усиления в зависимости от угла влета электронов относительно кристаллографической оси.

Моделирование многократного рассеяния электрона, движущегося в ОК, проводилось с учетом каждого индивидуального взаимодействия его с атомами решетки [1-13]. Такой подход позволяет проанализировать распределение электронов по числу некогерентных актов рассеяния. При каждом таком рассеянии происходит изменение поперечной энергии электрона ε (некогерент-

ное рассеяние). С другой стороны, поперечная энергия является интегралом движения в поле непрерывного потенциала атомной цепочки [14] (когерентное рассеяние на непрерывном потенциале). Роль непрерывного потенциала сводится к увеличению сечений некогерентного рассеяния и излучения в $S_0/S(\varepsilon)$ раз по сравнению с аморфной средой (см., например, [15]), где $S_0 = 1/Nd$ поперечная площадь, приходящаяся на одну цепочку; N — число атомов в единице объема; d — ближайшее расстояние между атомами в цепочке. Доступная электрону поперечная площадь есть $S(\varepsilon) = \pi r^2(\varepsilon)$, где $r(\varepsilon)$ определяется из условия $U(r) = \varepsilon$, U(r) — непрерывный потенциал атомной цепочки. Фактор $S_0/S(\varepsilon)$ возникает при усреднении функции P(r), определяющей зависимость от прицельного параметра, по всей доступной области с учетом равномерного распределения электронов по поперечным координатам [14]. При этом предполагается гауссовский характер функции $P(r) \sim \exp(-r^2/u_\perp^2)$. Строго говоря, следует учесть еще множитель $1 - \exp[-r^2(\varepsilon)/u_{\perp}^2] \approx 1$ [15], так как $r(arepsilon)\gg u_{\perp},$ где u_{\perp} — амплитуда тепловых колебаний атомов кристалла.

Сечение некогерентного рассеяния на атоме рассчитывалось нами на основе потенциала Мольера, который дает близкие к реальности значения на малых расстояниях от атома $r \leq a_F$ и имеет правильную асимптотику при $r \to 0$ (здесь a_F — параметр экранирования Томаса—Ферми). Непрерывный потенциал атомной цепочки U(r) вычислялся на основе атомного потенциала Дойля—Тёрнера [16], который более предпочтителен на расстояниях $r \geq a_F$. Последнее обстоятельство существенно для правильного расчета доступной области $S(\varepsilon)$.

Атомный потенциал Мольера имеет вид

$$V(r) = -(Ze^{2}/r) \sum_{i=1}^{3} \alpha_{i} \exp(-\beta_{i}r)/a_{F},$$
 (1)

где $\alpha_i=(0.1,0.55,0.35),\,\beta_i=(6.0,1.2,0.3),\,Z$ — атомный номер вещества.

Дифференциальное сечение рассеяния электрона на угол θ , вычисленное в первом борновском приближении для потенциала (1), будет

$$d\sigma = \sigma_0 \theta_a^2 \sum_{i,k=1}^3 \frac{\alpha_i \alpha_k 2\theta d\theta D(\theta)}{(\theta^2 + \beta_i^2 \theta_a^2)(\theta^2 + \beta_k^2 \theta_a^2)},$$
 (2)

где $\theta_a=\hbar c/(Ea_F)$ — характерный угол рассеяния на атоме, $E=\gamma mc^2$ — энергия электрона, γ — лоренцфактор, m — масса покоя электрона, a_F — параметр экранирования Томаса—Ферми.

Величина $D(\theta)$ есть фактор Дебая–Валлера

$$D(\theta) = 1 - \exp(-u_{\perp}^{2} \theta^{2} / a_{F}^{2} \theta_{a}^{2}), \tag{3}$$

где средняя амплитуда тепловых колебаний атомов кристалла u_{\perp} зависит от его температуры.

Величина $\sigma_0 = \pi a_F^2 \eta^2$ есть полное сечение рассеяния, вычисленное для экранированного кулоновского потенциала; $\eta = 2\alpha Z$ — параметр Бора [17], определяющий пределы применимости борновского приближения $(\eta \ll 1)$, $\alpha = 1/137$.

Фактор Дебая–Валлера позволяет выделить когерентную часть сечения рассеяния, связанную с рассеянием на непрерывном потенциале атомной цепочки, так что выражение (2) описывает некогерентное рассеяние электрона на отдельных атомах кристалла.

Полное сечение рассеяния на атоме, согласно (2) и (3), есть

$$\sigma = \sigma_0 (u_{\perp}/a_F)^2 \sum_{i,k=1}^3 f_{ik}, \tag{4}$$

где

$$f_{ik} = \begin{cases} -\alpha_i^2 x_i, & i = k \\ \alpha_i \alpha_k (\mu_i - \mu_k)^{-1} [\ln(\mu_i / \mu_k) + x_k - x_i], & i \neq k. \end{cases}$$

Здесь $x_i = \exp(\mu_i)Ei(-\mu_i)$, $\mu_i = (u_\perp\beta_i/a_F)^2$, Ei(x) — интегральная экспонента. Выражение (4) определяет длину свободного пробега квазиканалированных электронов $(\varepsilon>0)$: $l_q=(\sigma N)^{-1}$. Для таких электронов доступна вся поперечная плоскость $S(\varepsilon)=S_0$. Длина свободного пробега электрона с поперечной энергией $\varepsilon<0$ соответственно в $S_0/S(\varepsilon)$ раз меньше. Для кремния $l_q\approx 1\,\mu\text{m}$, что примерно в два раза больше, чем получается без учета фактора Дебая—Валлера (3).

Пусть $\langle k(z) \rangle$ есть среднее число неупругих актов рассеяния электронов в мишени с толщиной z. Имеет смысл сравнить эту величину в ОК с аморфным веществом той же толщины. На рис. 1 (левая шкала) показана зависимость отношения $\langle k \rangle / \langle k \rangle_{am}$ числа неупругих актов рассеяния (близких столкновений) электронов с энергией 1.2 GeV в аксиально ориентированном кристалле кремния $\langle 110 \rangle$ к соответствующему числу столкновений в разориентированном кристалле в зависимости от его толщины. Начальная угловая расходимость электронов в расчете бралась $\Delta\theta = \pm 0.5\theta_L$, где $\theta_L = (4Ze^2/dE)^{1/2}$ — критический угол Линдхарда [14]. Число близких столкновений в аморфной среде рассчитывалось по формуле $\langle k \rangle_{am} = N\sigma z$, где сечение σ задается формулой (4).

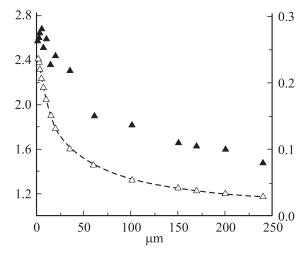


Рис. 1. Δ — отношение числа близких некогерентных столкновений электронов с атомами в кристалле кремния $\langle 110 \rangle$ к соответствующим значениям в аморфной мишени (левая шкала), Δ (правая шкала) — число электронов в канале. Ось абсцисс — толщина мишени в микрометрах. Энергия электронов 1.2 GeV при начальной угловой расходимости пучка $\pm 0.5 \Theta_L$.

Правая шкала на рис. 1 показывает число электронов в канале на данной глубине $N_c(z)$ (пунктир; ср. с [18]). Практически важной величиной является эффективная длина каналирования [19]

$$z_{\text{eff}}(z) = \int_{0}^{z} N_c(z')dz'. \tag{5}$$

В примере, рассмотренном выше (рис. 1), $z_{\rm eff}\approx 15\,\mu{\rm m}$ при толщине кристалла 240 $\mu{\rm m}$. При толщинах 20 и 1000 $\mu{\rm m}$ эффективная длина каналирования равна соответственно 3 и 27 $\mu{\rm m}$.

Таким образом, из рис. 1 следует, что число близких столкновений с атомами даже в относительно толстом ОК (с толщиной $z\gg z_{\rm eff}$) может существенно превышать соответствующую величину для аморфной среды. Отношение $\langle k\rangle/\langle k\rangle_{am}$ падает с увеличением толщины z медленнее, чем по закону 1/z (при больших z), что согласуется со статической теорией, развитой в [20].

Среднее число близких соударений $\langle k(z) \rangle$ в ОК не дает адекватной информации о характере многократного рассеяния из-за гораздо более сильного разброса числа столкновений вокруг среднего значения по сравнению с аморфной средой. Пусть $P_k(z)$ есть вероятность того, что электрон испытывает ровно k индивидуальных некогерентных актов рассеяния в мишени с толщиной z. Тогда среднее число таких событий будет

$$\langle k(z) \rangle = \sum_{k=0}^{\infty} k P_k(z).$$
 (6)

Именно эта величина представлена на рис. 1 (левая шкала).

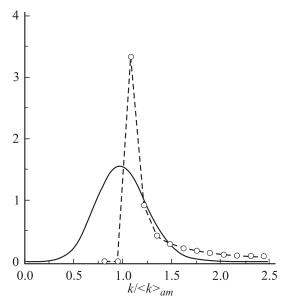


Рис. 2. Распределение вероятностей для числа близких столкновений электронов с энергией $1.2\,\mathrm{GeV}$ в кристалле кремния $\langle 110 \rangle$ с толщиной $15\,\mu\mathrm{m}$ (пунктир). Ось абсцисс — число столкновений в единицах их среднего значения для аморфной среды. Сплошная кривая — распределение Пуассона в аморфной мишени. Начальная угловая расходимость электронов $\pm 0.5\theta_L$.

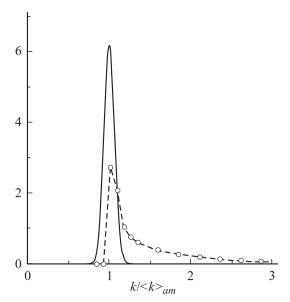


Рис. 3. То же, что и на рис. 2, но для кристалла с толщиной 240 μ m.

В аморфной среде величина $P_k(z)$ задается распределением Пуассона

$$P_k(z) = \frac{\langle k(z) \rangle_{am}^k}{k!} \exp(-\langle k(z) \rangle_{am}), \tag{7}$$

где $\langle k(z) \rangle_{am} = N\sigma z$, σ задается выражением (4).

Вероятность электрону испытать ровно k некогерентных рассеяний $P_k(z)$ показана на рис. 2 и 3 для толщин

15 и 240 μ m соответственно (пунктир относится к ОК) для условий, соответствующих результатам, представленным на рис. 1. Сплошные кривые на рис. 2 и 3 есть распределение Пуассона (7) для аморфной среды. По оси абсцисс на рис. 2 и 3 отложено отношение $k/\langle k \rangle_{am}$, а по оси ординат — распределение P_k , умноженное на $\langle k \rangle_{am}$. Таким образом, распределения на рис. 2 и 3 нормированы на единицу. Видно, что фактор $S_0/S(\varepsilon)$ приводит к сильному отличию распределения $P_k(z)$ в ОК от распределения Пуассона (7). Именно в распределении появляется длинный "хвост", соответствующий большим числам близких столкновений. При толщинах $z \sim z_{\rm eff}$ в ОК (рис. 2) наблюдается сильное подавления числа столкновений для $k/\langle k \rangle_{am} < 1$. При этом в точке максимума распределения значение для ОК превышает эту же величину в аморфной среде. В толстых мишенях $z\gg z_{\rm edd}$ (рис. 3), наоборот, максимальное значение распределения в аморфной мишени превышает максимальное значение в ОК, причем "хвост" в толстом ОК выражен сильнее, чем в тонком.

Число фотонов, излучаемых в заданном интервале частот на единице длины пути в аморфной мишени, определяется формулой Бете—Гайтлера

$$n_{am}(u) \equiv \frac{d^2 n_{am}}{du dz} = \frac{4}{3Lu} \left(1 - u + \frac{3}{4} u^2 \right),$$
 (8)

где $1/L=4\alpha Z^2 r_0^2 N \ln(183Z^{-1/3}), L$ — радиационная длина, $u=\hbar\omega/E, \, r_0=e^2/mc^2.$

Сечение некогерентного ТИ электрона с заданной поперечной энергией ε в ОК выражается через сечение для аморфной среды (8) как $n = n_{am}S_0/S(\varepsilon)$.

Длина свободного пробега z_0 между двумя последовательными актами излучения определяется из того что вероятность для W электрона не излучить ни одного фотона на длине z_0 есть

$$W(z_0) = \exp\left[-\int_0^{z_0} n(z')dz'\right],\tag{9}$$

где зависимость полной вероятности излучения на единице длины пути n от глубины проникновения z определяется тем, что эта величина в ОК зависит от поперечной энергии электрона, а последняя меняется изза многократного рассеяния.

Полная вероятность излучения на единице длины пути n определяется интегрированием формулы (8) по частотам, начиная с некоторой минимальной частоты u_m . В наших расчетах полагалось $u_m = 0.01$.

Сравнение нашего расчета выхода ТИ в ОК кремния $\langle 110 \rangle$ с толщиной $240\,\mu\mathrm{m}$ с экспериментом [4] для электронов с энергией $1.2\,\mathrm{GeV}$ показано на рис. 4. Темные значки — эксперимент, светлые значки, соединенные сплошной линией, представляют результат численного моделирования. По оси ординат показано отношение интенсивности излучения в кристалле к той же величине в аморфной среде. Особенности эксперимента [4] таковы, что измерялась именно некогерентная

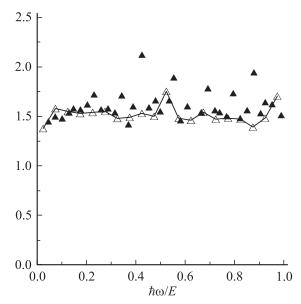


Рис. 4. Отношение выхода некогерентного тормозного излучения электронов с энергией 1.2 GeV в кристалле кремния $\langle 110 \rangle$ с толщиной 240 μ m к значениям для аморфной мишени. \blacktriangle — эксперимент [4]; \triangle — теория. Начальная угловая расходимость пучка $\pm 0.5 \theta_L$.

часть спектра. Значения интенсивности для аморфной мишени рассчитывались нами также путем численного моделирования. Из рис. 4 следует, что превышение над аморфной средой в ~ 1.5 раз в точности соответствует такому же по величине превышению по числу близких столкновений (при $z = 240 \,\mu\text{m}$; рис. 1). Таким образом, по результатам, представленным на рис. 1, можно судить о величине превышения интенсивности некогерентного ТИ в ОК над аморфной средой для различных толщин мишеней. Так, в кристалле кремния толщиной в 15 μ m превышение составит ~ 2.4 раза. Несмотря на то что экспериментальные данные лежат несколько выше теоретических, рис. 4 демонстрирует хорошее согласие теории с экспериментом, что говорит о правильности предположения о роли фактора $S_0/S(\varepsilon)$, определяющего отличие ОК от аморфной среды.

В работе [5] измерялось некогерентное ТИ в кристалле кремния $\langle 110 \rangle$ с толщиной $500\,\mu\mathrm{m}$ ($E=1.2\,\mathrm{GeV}$) при относительно большой угловой расходимости пучка электронов $\sim 1.3\theta_L$. На рис. 5 показано сравнение наших расчетов (светлые значки) с экспериментом (темные значки) при параллельной ориентации направления $\langle 110 \rangle$ кристалла относительно оси пучка электронов. Сильное превышение экспериментальных данных над расчетными значениями в мягкой части спектра объясняется когерентным излучением [21] в непрерывном потенциале атомных цепочек, которое мы в расчетах не учитывали. Из рис. 5 видно, что в обсуждаемом случае фактор превышения (для фотонов с $\hbar\omega > 200\,\mathrm{MeV}$) составляет ~ 1.2 раза.

Рис. 6 иллюстрирует ориентационную зависимость выхода некогерентного ТИ фотонов с энергией

 $(1.05\pm0.03)~{\rm GeV}$ для электронов в кремнии с толщиной $500\,\mu{\rm m}~(E=1.2~{\rm GeV}).$ По оси абсцисс отложен угол наклона (в градусах) оси электронного пучка к направлению $\langle 110 \rangle$ кристалла (в данном случае $\theta_L=0.024^\circ$). Светлые значки — эксперимент [5], темные — наш

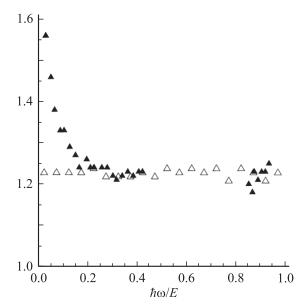


Рис. 5. Сравнение теории (\triangle) и эксперимента [5] (\blacktriangle) выхода некогерентного тормозного излучения электронов с энергией 1.2 GeV в кремнии с толщиной 500 μ m. Ось абсцисс — энергия фотонов, ось ординат — отношение интенсивности излучения в кристалле (ось $\langle 110 \rangle$) к интенсивности в аморфной мишени. Начальная угловая расходимость электронов $\pm 1.3\theta_L$.

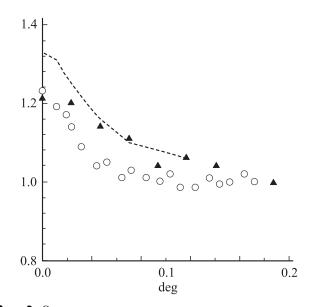


Рис. 6. Ориентационная зависимость выхода некогерентного тормозного излучения электронов с энергией 1.2 GeV в кремнии с толщиной 500 μ m. \circ — эксперимент [5], \blacktriangle — теория. Ось абсцисс показывает величину угла наклона направления $\langle 110 \rangle$ кристалла к оси электронного пучка, угловая расходимость которого $\pm 1.3\theta_L$. Пунктир — расчет для расходимости $\pm 0.2\theta_L$.

расчет. Угловая расходимость пучка электронов $\sim 1.3\theta_L$. В области малых углов имеется хорошее согласие теории с экспериментом, тогда как при углах наклона в несколько критических углов каналирования теоретическая кривая лежит несколько выше экспериментальной. Пунктир на рис. 6 соответствует меньшей угловой расходимости электронов — $\sim 0.2\theta_L$. Некоторое расхождение теории и эксперимента для углов наклона $\sim 2-3\theta_L$ не совсем понятно, учитывая хорошее согласие для параллельной взаимной ориентации оси пучка к кристаллографической оси. Эффектом коллимации фотонов расхождение объяснить нельзя, так как в эксперименте [5] измерялась энергия электронов на выходе. В связи с этим следует иметь в виду, что при наклонном попадании электронов в кристалл имеет место сильное когерентное рассеяние их на непрерывном потенциале атомных цепочек с сохранением поперечной энергии. Тогда угловое распределение электронов на выходе перестает быть азимутально-симметричным [22,23], и поэтому не ясно, все ли электроны в эксприменте [5] попадали в детектор при углах наклона $\sim 2-3\theta_L$.

Список литературы

- [1] Белошитский В.В., Кумахов М.А. // ЖЭТФ. 1982. Т. 82. С. 462–472.
- [2] Кумахов М.А. // УФН. 1975. Т. 115. С. 427-464.
- [3] Inoue M., Takenaka S., Yoshida K. et al. // Nucl. Instr. & Meth. in Phys. Res. 2001. Vol. 173. P. 104–111.
- [4] Бочек Г.Л., Гришаев И.А., Коваленко Г.Д. и др. // Письма в ЖЭТФ. 1980. Т. 32. С. 380–383.
- [5] Endo I., Monaka T., Sakaguchi A. et al. // Phys. Lett. A. 1990.Vol. 146. P. 150–154.
- [6] Байер В.Н., Катков В.М., Страховенко В.М. // УФН. 1989. Т. 159. № 7. С. 455–491.
- [7] *Ахиезер А.И., Шульга Н.Ф.* // Электродинамика высоких энергий в веществе. М.: Наука, 1993. § 62. 344 с.
- [8] Базылев В.А., Жеваго Н.К. // Излучение быстрых частиц в веществе и во внешних полях. М.: Наука, 1987. § 7.7. 272 с.
- [9] Nitta H., Shimizu K., Ohtsuki Y.H. // Rad. Eff. and Def. in Sol. 1991. Vol. 122–123. P. 383–392.
- [10] Sorensen A. // Relativistic Channeling / Ed. R.A. Carrigan, Jr., J.A. Ellison. New York: Plenum, 1987. P. 331–337.
- [11] Хоконов М.Х. // ЖЭТФ. 1993. Т. 103. С. 1723-1741.
- [12] Khokonov M.Kh., Tuguz F.K. // Nucl. Instr. & Meth. in Phys. Res. 1993. Vol. 82. P. 46–51.
- [13] Khokonov M.Kh. // Rad. Eff. and Deff. in Sol. 1994. Vol. 132. P. 91–101.
- [14] Lindhard J. // Mat. Fys. Medd. Dan. Vid. Selsk. 1965. Vol. 34. N 14. P. 1–64.
- [15] *Рябов В.А.* // Эффект каналирования. М.: Энергоатомиздат, 1994. § 3.4. 241 с.
- [16] Doyle P.A., Turner P.S. // Acta Cryst. A. 1968. Vol. 24. P. 390–
- [17] Bohr N. // Det Kgl. Dan. Vid. Selsk. Mat. Fys. Medd. 1948. Vol. 18. N 8. P. 1–144.
- [18] Хоконов М.Х. // ЖТФ. 1994. Т. 64. С. 181-183.
- [19] Kumakhov M.A. // Phys. Lett. A. 1990. Vol. 145. P. 195–196.

- [20] Хоконов А.Х., Хоконов М.Х. // Письма в ЖТФ. 2005. Т. 31. С. 44–148.
- [21] Kumakhov M.A. // Phys. Lett. A. 1976. Vol. 57. P. 17–18.
- [22] Белошитский В.В., Кумахов М.А. // ФТТ. 1972. Т. 15. С. 1588–1592.
- [23] Golovchenko J.A. // Phys. Rev. A. 1976. Vol. 13. P. 4672–4677.