01;04;07;12

Исследование плазмы тлеющего и контрагированного разряда в азоте методами спектроскопии КАРС, оптической интерферометрии и численного моделирования

© В.А. Шахатов, 1 О.А. Гордеев 2

- 1 Институт нефтехимического синтеза им. А.В. Топчиева РАН,
- 119991 Москва, Россия

e-mail: shakhatov@ips.ac.ru

- ² Московский государственный авиационный институт,
- 125993 Москва, Россия e-mail: perminov@mail.ru

(Поступило в Редакцию 16 марта 2005 г.)

Методами спектроскопии КАРС (когерентное антистоксово рассеяние света) и оптической интерферометрии измерена поступательная температура в плазме тлеющего и контрагированного разряда. Плотность тока в разряде определена из измерений концентрации электронов методами оптической интерферометрии и эмиссионной спектроскопии. Функции распределения молекул азота по колебательным и вращательным уровням в основном электронном состоянии и электронов по энергии, а также зависимость температуры газа от времени определялись численно на основе модели, включающей однородное уравнение Больцмана и уравнения баланса для концентраций заряженных и возбужденных частиц и температуры газа. Исследована динамика установления квазистационарного распределения молекул азота по колебательным уровням.

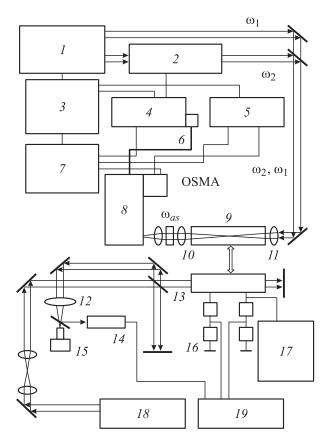
Введение

Молекулярный азот широко используется в различных плазмохимических технологических процессах, а также в качестве небольшой добавки к различным газам для определения параметров плазмы газового разряда. Плазма тлеющего разряда в азоте представляет собой сильно неравновесный слабоионизованный газ. Факторами неравновесности, влияющими на характер кинетики процессов в плазме разряда, являются нарушение равновесия между колебательными, вращательными и поступательными степенями свободы молекул, а также отклонение функции распределения электронов по энергии (ФРЭЭ) от распределения Максвелла [1–3]. Замедленная колебательная релаксация молекул азота в разряде обусловливает высокую степень колебательного возбуждения молекул. При этом заселенности колебательных уровней молекул не описываются формулой Больцмана [4]. Это значительно усложняет экспериментальные и теоретические исследования динамики нагрева газа, формирования ФРЭЭ и функции распределения молекул по колебательно-вращательным уровням энергии (ФРК).

Численное моделирование кинетики процессов в неравновесной плазме газовых разрядов, даже с самым подробным их описанием, а тем более упрощенным, требует сравнения с экспериментом для проверки достоверности результатов расчетов. Имеющиеся в литературе константы скоростей и сечения элементарных процессов в газовом разряде, входящие в кинетические уравнения, далеко не всегда известны с приемлемой точностью, поскольку трудно поддаются расчетам или измерениям. Так, приводимые в различных работах сечения возбуждения колебательных уровней молекул азота электронным ударом различаются в четыре раза [5]. Разброс значений констант скоростей колебательно-колебательного обмена энергией (VV-обмена) и колебательно-поступательной релаксации (VT-релаксации) достигает по данным разных работ порядка величины [6]. В этой ситуации, с одной стороны, является актуальным развитие средств диагностики плазмы. С другой стороны, разработка средств диагностики неизбежно сталкивается с изучением элементарных процессов в плазме и выбором адекватных моделей, обосновывающих развиваемые методы контроля. Разумный синтез экспериментальных и численных исследований позволяет получить экспериментальное подтверждение применимости выбранного численного метода, кинетической модели и восполнить недостающие сведения о константах скоростей и сечениях элементарных процессов. Это позволяет с наименьшими материальными затратами провести оптимизацию технологических процессов, использующих в качестве активной среды плазму неравновесного газового разряда и выполнить всестороннее исследование ее свойств в широком диапазоне определяющих ее параметров.

Существенным вопросом с точки зрения исследования формирования ФРЭЭ и ФРК в плазме азота является вопрос о кинетических механизмах, обусловливающих их взаимосвязь [7–9]. Кроме того, важной величиной в плазме разряда является поступательная температура, от значения которой зависят направление протекания и константы скоростей многих плазмохимических процессов.

Основными процессами, определяющими взаимосвязь между ФРЭЭ и ФРК, являются столкновения первого и второго родов электронов с колебательновозбужденными молекулами в основном электронном состоянии $N_2(X^1\Sigma_g^+, v)$. Кроме того, при рассмотрении


формирования ФРК необходимо учитывать процессы VV-обмена и VT-релаксации. В данной работе этот вопрос исследован с привлечением зондовых измерений ФРЭЭ [10,11] и совместного решения уравнения Больцмана и уравнений баланса для ФРК [7–9]. Входные данные для расчетов, такие как поступательная и колебательная температура, приведенная напряженность электрического поля и концентрация электронов, были измерены методами эмиссионной спектроскопии, оптической интерферометрии и спектроскопии КАРС. В данной работе основное внимание уделено определению низкоэнергетической части ФРЭЭ. Надежность определения констант скоростей процессов с высокими порогами требует дополнительного исследования высокоэнергетической части ФРЭЭ.

Экспериментальному исследованию динамики нагрева азота в газовом разряде посвящено большое количество работ [12-19]. Трудности сопоставления результатов измерений и расчетов обусловлены несколькими причинами. Во-первых, при исследовании нагрева азота необходимо учитывать взаимосвязь между ФРЭЭ и ФРК, а также многочисленные процессы, которые могут оказывать влияние на их формирование в условиях плазмы разряда. К этим процессам относятся столкновения первого и второго родов между электронами и возбужденными частицами, релаксационные процессы, дезактивация возбужденных молекул и рекомбинация атомов, тепловые потери за счет наличия пространственного градиента поступательной температуры газа и т.д. В данной работе поступательная температура T_g измерялась методами оптической интерферометрии и спектроскопии КАРС. Особо важную роль в условиях данного эксперимента играет канал VV-обмена энергией между молекулами азота. Надо отметить, что вид ФРК, получаемый в результате расчетов, является чувствительным к изменению значений констант скоростей VV-обмена энергией между молекулами [15].

Выбор в качестве объекта исследования тлеющего разряда оправдан, во-первых, тем, что плазма положительного столба характеризуется заметным нарушением равновесия между колебательными, вращательными и поступательными степенями свободы молекул азота. Вовторых, характеристики тлеющего разряда, такие как напряжение на электродах, катодное падение потенциала и сила тока, необходимые для определения концентрации электронов N_e и приведенной напряженности электрического поля E/N, можно достаточно надежно измерить. В-третьих, для него существует возможность использовать уже имеющиеся экспериментальные данные для Φ РЭЭ, полученные из зондовых измерений.

Экспериментальная установка и методики измерений

На рис. 1 приведена схема экспериментальной установки для измерений динамики нагрева газа, распределения плотности газа и концентрации электронов по

Рис. 1. Схема экспериментальной установки: $I - \mathrm{Nd}^{+3}$ YAG лазер; $2 - \mathrm{лазер}$ на красителе; $3 - \mathrm{источник}$ питания; $4,5 - \mathrm{контроллеры}$; $6,14 - \Phi \ni \mathsf{Y}$; $7 - \mathrm{компьютер}$; $8 - \mathrm{монохроматор}$; $9 - \mathrm{разрядная}$ кювета; $10 - \mathrm{фильтр}$; $11 - \mathrm{линза}$; $12 - \mathrm{линза}$ $f = 150\,\mathrm{cm}$; $13 - \mathrm{клин}$; $15 - \mathrm{фотокамера}$; $16 - \mathrm{делители}$; $17 - \mathrm{источник}$ питания; $18 - \mathrm{He-Ne}$ лазер; $19 - \mathrm{осциллограф}$.

сечению разрядной кюветы, вращательной температуры и ФРК в тлеющем разряде в азоте методами эмиссионной спектроскопии, интерферометрии и спектроскопии КАРС.

В эксперименте использовался продольный тлеющий разряд постоянного тока. Разряд создавался в кварцевой кювете в диапазоне давлений p = 3-30 Torr. Кювета имела водяное охлаждение, что позволяло в процессе измерений поддерживать температуру стенки T_w равной 300 К. В кювете осуществлялся слабый проток газа, предварительно очищенного в азотных ловушках. Кольцевые титановые электроды помещались внутри кюветы и заделывались заподлицо в кварцевую стенку трубки. Внутренний радиус трубки *R* равнялся 1.8 ст. В зависимости от применяемых средств оптической диагностики для торцевых отверстий кюветы использовались окошки, изготовленные из различного материала. При применении методов оптической интерферометрии и эмиссионной спектроскопии использовались кварцевые окна, прозрачные для ближнего ультрафиолетового и видимого излучения длин волн $\lambda = 300-700\,\mathrm{nm}$. При измерениях поступательной температуры и заселенностей колебательных уровней молекул азота в разряде методом спектроскопии КАРС в качестве входного и выходного окошек кюветы применялись абсорбционные светофильтры ЖС-17 и СС-5. Фильтр ЖС-17 служил для устранения сигнала КАРС, возникающего в результате нелинейного взаимодействия пучков излучения лазеров в атмосфере на пути к кювете. Фильтрация полезного сигнала КАРС из фонового излучения разряда и излучения лазеров осуществлялась с помощью светофильтра СС-5.

Измерения значений поступальной температуры T_g и заселенностей колебательных уровней молекул азота проводились на двух стадиях горения тлеющего разряда. На первой стадии в интервале времени от 3 до 15—20 ms проводились измерения T_g методом оптической интерферометрии. Эта стадия соответствовала режиму горения разряда, при котором происходило формирование его основных параметров — силы тока, T_g и ФРК при постоянном давлении. Инициирование тлеющего разряда осуществлялось ступенчатым увеличением напряжения на электродах кюветы высоковольтным стабилизированным источником питания. Синхронно с поджигом разряда в разрядном промежутке с использованием омических делителей на осциллографе измерялись падение напряжения и сила тока в зависимости от времени.

На промежутках времени $t>20-25\,\mathrm{ms}$, при которых низкочастотные вибрации установки увеличивали погрешность интерферометрических измерений, для определения T_g и ФРК использовался метод узкополосной спектроскопии КАРС. Кроме того, дополнительно исследовались распределения T_g , плотности газа N и N_e по сечению кюветы методами оптической интерферометрии и эмиссионной спектроскопии. Данная стадия соответствовала квазистационарному режиму горения тлеющего разряда. Ток в разряде поддерживался равным $I_L=20-50\,\mathrm{mA}$.

Измерения значений p и T_g , а также напряжения на электродах позволили определить E/N. Значение напряженности электрического поля E в положительном столбе тлеющего разряда определялось с учетом падения напряжения в катодном слое [2]. Концентрация молекул N на оси разряда определялась с учетом падения плотности в результате нагрева газа. Значения E/N изменялись в диапазоне от 80 до 40 Td. Для измерений зависимости T_g на оси кюветы от времени и ее распределения по сечению в тлеющем разряде применялся двухпроходовый интерферометр Майкельсона [20,21].

В качестве источника монохроматического излучения интерферометра использовался одномодовый Не–Ne лазер с длиной волны излучения 632.8 nm и мощностью 50 mW. Луч лазера расширялся с помощью телескопа до 4 cm в диаметре и клином делился на два пучка: предметный и опорный. Предметный пучок через окошки кюветы направлялся к зеркалу, отражался обратно и после совмещения с опорным пучком на клине попадал на линзу, куда приходил и опорный пучок, отраженный от зеркала. Оптическая схема с двойным прохождением

луча через кювету применялась для увеличения чувствительности установки при низких давлениях. Линза с фокусным расстоянием 150 ст, расположенная перед делительной пластиной, позволяла согласовывать размер интерференционной картины с размерами кадра фотокамеры и щелью фотоэлектронного умножителя (ФЭУ). Фотографирование интерференционной картины давало информацию о распределении $T_{\rm g}$ по радиусу газоразрядной трубки. Максимальное смещение интерференционной полосы на оси разряда составляло 3.2-8 в величинах ширины полосы. Погрешность в определении смещения полосы была в пределах 0.2 ширины полосы. Смещение интерференционных полос на оси разряда во времени регистрировалось с помощью ФЭУ. Перед катодом $\Phi \ni Y$ размещалалась щель размером $0.3 \times 4.5 \, \text{mm}^2$ таким образом, что центр интерференционной картины совпадал с центром щели. Полосы ориентировались параллельно щели. Сигнал с ФЭУ записывался на осциллограф. Временное разрешение $\Phi \ni Y$ составляло $5 \mu s$. Типичные сигналы с ФЭУ и интерферограммы приведены в ранее опубликованных работах [22,23]. Обработка результатов измерений смещений интерференционных полос проводилась по методике, изложенной в [20,21],

Концентрация электронов N_e от времени на оси разрядной кюветы рассчитывалась из зависимости силы тока от дрейфовой скорости электронов и площади сечения разряда S_e ($S_e = \pi \cdot R_e^2$, где R_e — эффективный радиус токового шнура, определяемый аналогично работе [14]). Дрейфовая скорость определялась на основе решения уравнения Больцмана для ФРЭЭ. В качестве исходных параметров для ее определения использовались измеренные параметры плазмы тлеющего разряда.

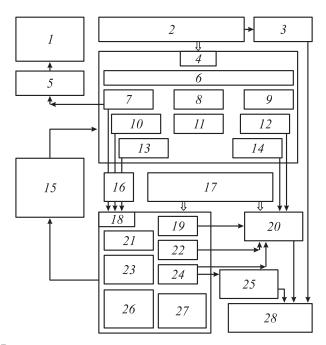
Экспериментально установлено [14], что для $p \approx 15-20$ Тогт в контрагированном разряде имеет место корреляция между радиальными распределениями по сечению кюветы интенсивности излучения второй положительной системы азота и концентрации электронов. Поэтому для определения R_e исследовались распределения интенсивностей излучения $I_{\lambda}(r)$ по радиусу клюветы r на длинах волн $\lambda = 337, 354, 358, 380$ nm второй положительной системы азота. Для измерений $I_{\lambda}(r)$ использовался метод двух диафрагм $(2 \times 2 \text{ mm}^2)$. При измерениях использовался спектральный комплекс с фотоэлектрической регистрацией. Пространственное разрешение по радиусу кюветы составляло 2 mm. Значение эффективного радиуса R_e определялось из соотношения [14]

$$R_e^2 = 2 \int_0^R \frac{I_{\lambda}(r)}{I_{\lambda}(0)} r \cdot dr. \tag{1}$$

В стационарном режиме тлеющего разряда для определения значений вращательной температуры и заселенностей колебательных уровней $v=0{-}4$ молекул азота в основном электронном состоянии применялся спектрометр КАРС ("Sopra", Франция).

Излучение второй гармоники Nd^{+3} : YAG лазера на частоте, соответствующей волновому числу $\nu_1 =$

 $= 18797 \, \mathrm{cm}^{-1}$ (до 50 mJ в импульсе при длительности импульсов 25 ns и частоте повторения 10 Hz), совместно с излучением перестраиваемого узкополосного лазера на красителе (до 1 mJ в импульсе на частоте $v_2 = 16475 \, \text{cm}^{-1}$) фокусировалось вдоль оси положительного столба тлеющего разряда линзой с фокусным расстоянием 50 ст. При измерении заселенностей колебательных уровней при p = 3.5 Torr применялась коллинеарная схема взаимодействия пучков, обеспечивающая пространственное разрешение $250 \, \mu \text{m} \times 250 \, \mu \text{m} \times 4 \, \text{cm}$. Для того чтобы повысить пространственное разрешение при измерениях вращательной температуры при p = 11-20 Torr, также использовалась схема острой фокусировки пучков в плоскости (Planar BOXCARS). Эта схема позволяла достигнуть пространственного разрешения $250 \times 250 \times 500 \,\mu\text{m}$. Выделение полезного сигнала на антистоксовой частоте ω_{as} из фонового излучения лазеров и разряда осуществлялось широкополосными фильтрами и монохроматором с вогнутой дифракционной решеткой. Регистрация полезного сигнала КАРС проводилась в режиме накопления импульсов с помощью оптического спектрального многоканального анализатора (OSMA).


Для определения заселенностей колебательных уровней регистрировалось распределение интенсивности в спектре Q-ветви колебательно-вращательных переходов от $v = 0 \rightarrow v = 1$ (Q_{01}) до $v = 4 \rightarrow v = 5$ (Q_{45}). ФРК определялись по спектрам КАРС методом, предложенным в [22]. Для определения вращательной температуры $T_{\rm rot}$ в экспериментах использовался колебательновращательный комбинационный спектр Q-ветви колебательного перехода $v=1 \to v=2$. По экспериментальному спектру восстанавливалась зависимость $\ln(N_J/g_J)$ от значений $J(J+1)\ (N_J$ — заселенность вращательного уровня с вращательным квантовым числом J, g_I — кратность его вырождения). При восстановлении распределения учитываются кратности вырождения вращательных уровней и вырождения по спину основного электронного состояния. Вращательная температура определялась по углу наклона прямой

$$\ln(N_J/g_J) = \text{const} + J \cdot (J+1) \frac{B_e}{k \cdot T_{\text{rot}}}, \qquad (2)$$

построенной с использованием метода наименьших квадратов в предположении, что заселенности вращательных уровней подчиняются распределению Больцмана. Здесь B_e — вращательная постоянная молекулы азота, k — постоянная Больцмана. В условиях данной работы поступательная температура совпадает с вращательной.

Кинетическая модель

На рис. 2 приведена схема, поясняющая определение ФРЭЭ и ФРК, а также исследование механизмов, обусловливающих их взаимосвязь и нагрев газа. При определении низкоэнергетической части ФРЭЭ и ФРК для

Рис. 2. Блок-схема расчета кинетики в разряде: 1 — сопоставление расчетных и экспериментальных данных для Φ PЭЭ, v_{dr} и D/μ ; 2 — входные экспериментальные данные для ФРЭЭ E/N, T_g , T_v ; 3 — вариация параметра T_v и сопоставление с экспериментом; 4 — ФРЭЭ; 5 — коррекция сечения σ_{Σ} при сопоставлении расчета с экспериментом; 6 — нагрев электронов под действием электрического поля Е; 7,21 колебательное возбуждение молекул электронным ударом; 8 — ионизация молекул и атомов электронным ударом; 9 — возбуждение ридберговских состояний молекул электронным ударом; 10, 23 — электронное возбуждение молекул и атомов электроным ударом; 11 — электрон-электронные столкновения; 12 — упругие столкновения молекул и атомов с электронами; 13 — диссоциация молекул электронным ударом; 14 — вращательное возбуждение молекул электронным ударом; 15 — последовательные итерации определения ФРЭЭ, ФРК, $v_{\rm dr}$, D/μ , T_g и T_v ; 16 — константы скорости реакций К_i; 17 — входные экспериментальные данные для уравнения теплопроводности и расчета ФРК (N, R, N_e , γ_v , γ_a , T_v); 18 — ФРК; 19 — VT-релаксация на молекулах; 20 — нагрев газа и теплоотвод на стенку кюветы; 22 — VTрелаксация молекул на атомах; 24 — VV-обмен молекул на молекулах; 25 — коррекция констант скоростей VV-обмена при сопоставлении расчета с экспериментом; 26 — диффузия возбужденных молекул и атомов с последующей гетерогенной релаксацией на стенке кюветы; 27 — диссоциация молекул электронным ударом и через колебательное возбуждение; 28 — сопоставление расчетных и экспериментальных данных для ФРК, T_v и T_g .

достижения наилучшего согласия между экспериментальными и расчетными данными проводилась вариация величины суммарного по первым восьми колебательным уровням сечения колебательного возбуждения σ_{Σ} и значений констант скоростей VV-обмена. Для того чтобы повысить надежность получаемой количественной информации о $\Phi P \ni 0$ и $\Phi P K$ и значений σ_{Σ} и констант

Таблица 1.

T_g , K		T_v , K		P, Torr	R cm	t ms	N_e , cm ⁻³	E/N, Td	Ссылка
Эксперимент	Теория	Эксперимент	Теория	7, 1011	rt, ciii	ι, πο	110, 0111	L/III, Id	ССЫЛКИ
$530 \pm 30^{\text{KAPC}}$	$470 \ (\gamma_v = 10^{-4}) 420 \ (\gamma_v = 10^{-3})$	$5300 \pm 350^{\text{KAPC}}$	4960 ($\gamma_v = 10^{-4}$) 4250 ($\gamma_v = 10^{-3}$)	2.0	1.0	11	$2\cdot 10^{10}$	80	[28]
$480 \pm 40^{\text{KAPC}}$	512 $(\gamma_v = 10^{-4})$ 470 $(\gamma_v = 10^{-3})$	$3790 \pm 350^{\text{KAPC}}$	3700 ($\gamma_v = 10^{-4}$) 3475 ($\gamma_v = 10^{-3}$)	3.5	1.8	20	$3.5\cdot 10^9$	45	[22]
$530 \pm 40^{ ext{KAPC}} \ 520 \pm 50^{ ext{OM}}$	545 $(\gamma_v = 10^{-4})$ 530 $(\gamma_v = 10^{-3})$	$4320 \pm 350^{\text{KAPC}}$	4255 $(\gamma_v = 10^{-4})$ 4200 $(\gamma_v = 10^{-3})$	7.0	1.8	15	$1.2 \cdot 10^{10}$	60	. ,
$600 \pm 40^{ ext{KAPC}} \ 570 \pm 50^{ ext{OM}}$	610 $(\gamma_v = 10^{-4})$ 605 $(\gamma_v = 10^{-3})$	$4270 \pm 350^{\mathrm{KAPC}}$	4240 ($\gamma_v = 10^{-4}$) 4240 ($\gamma_v = 10^{-3}$)	9.5	1.8	15	6 · 10 ⁹	70	
$395 \pm 15^{\text{KAPC}}$	$400 \ (\gamma_v = 10^{-4}) 360 \ (\gamma_v = 10^{-3})$	$2850 \pm 100^{\mathrm{KAPC}}$	2790 $(\gamma_v = 10^{-4})$ 2615 $(\gamma_v = 10^{-3})$	12.0	0.7	30	$\propto 10^9$	< 100	[27]
$1000 \pm 100^{\mathrm{KAPC}} \ 1140 \pm 110^{\mathrm{OH}}$	1135 $(\gamma_v = 10^{-4})$ 1135 $(\gamma_v = 10^{-3})$			15.0	1.8	30	$2 \cdot 10^{10}$	70	
$1200 \pm 110^{\text{KAPC}} \ 1230 \pm 120^{\text{OM}}$	1230 $(\gamma_v = 10^{-4})$ 1230 $(\gamma_v = 10^{-3})$			20.0	1.8	30	$4\cdot 10^{10}$	68	Данная работа
$1350 \pm 130^{\text{KAPC}} \ 1300 \pm 350^{\text{OM}}$	1300 ($\gamma_v = 10^{-4}$) 1300 ($\gamma_v = 10^{-3}$)			30.0	1.8	30	$5\cdot 10^{10}$	67	
1150—1200 ^{ОИ}	1170 $(\gamma_v = 10^{-4})$ 1170 $(\gamma_v = 10^{-3})$			20.0	1.0	30	$3.9 \cdot 10^{10}$	59	[14]

скоростей VV-обмена, в качестве исходных данных для их определения использовалось максимальное число измеренных параметров плазмы тлеющего разряда.

Для определения ФРЭЭ и ее основных моментов — дрейфовой скорости $v_{\rm dr}$ и характеристической температуры D/μ электронов в плазме разряда численно решалось уравнение Больцмана. Исходными параметрами для определения ФРЭЭ являлись измеренные значения E и T_g . Величина E/N определялась с учетом катодного падения потенциала и изменения концентрации молекул N в результате нагрева газа. Величина катодного падения потенциала для различных материалов, используемых в качестве электродов для поддержания тлеющего разряда, бралась из [2].

При сопоставлении результатов расчетов с измерениями ФРЭЭ [10,11] в диапазоне значений $E/N=40-80\,\mathrm{Td}$, которые являются типичными для экспериментальных условий (табл. 1), варьировалась величина σ_{Σ} , а также значение колебательной температуры первого колебательного уровня T_v , определяемой как $T_v=\theta_v/\ln(N_1/N_0)$, где θ_v — величина колебательного кванта молекулы азота.

ФРЭЭ и ФРК определялись в результате последовательных итераций из решения уравнений Больцмана и системы кинетических уравнений, описывающих баланс колебательно-возбужденных молекул и изменение химического состава газа. В данную систему уравнений было добавлено уравнение, описывающее изменение T_g в изобарическом приближении. Полученные в результате расчетов концентрации возбужденных частиц использовались для уточнения ФРЭЭ, меняющейся вследствие

изменения химического состава газа и столкновений второго рода электронов с возбужденными частицами. По рассчитанной ФРЭЭ находились константы скорости реакций K_i , $v_{\rm dr}$ и потери энергии электронами в упругих столкновениях с тяжелыми частицами $\eta_{\rm elas}$ и при вращательном возбуждении $\eta_{\rm rot}$ молекул. Полученные K_i , $v_{\rm dr}$, $\eta_{\rm elas}$ и $\eta_{\rm rot}$ использовались для расчета изменения компонентного состава газа в плазме разряда, определения N_e и динамики нагрева газа соответственно. Важно отметить, что на каждом последующем шаге из сопоставления рассчитанных и измеренных значений ФРК, T_g , ФРЭЭ и ее основных моментов уточнялись значения констант скоростей VV-обмена и сечения σ_{Σ} . Описанная выше процедура повторялась до тех пор, пока не достигалась сходимость для искомых величин.

При определении значений N_e и T_g учитывалось их неоднородное распределение по сечению разрядной кюветы. При решении уравнений баланса, описывающих изменение компонентного состава, учитывалась диффузия частиц на стенку разрядной кюветы с последующей гетерогенной релаксацией (VW). Это позволило оценить степень их влияния на результаты расчетов Φ PK и нагрева газа.

Кинетическое уравнение для определения ФРЭЭ

При решении однородного уравнения Больцмана использовался метод двухчленного приближения, при котором ФРЭЭ раскладывается в ряд по сферическим гармоникам (полиномам Лежандра), и в разложении

ограничиваются двумя первыми членами этого ряда, определяющими ее изотропную часть $f(\varepsilon)$ и токовые характеристики электронов.

ФРЭЭ $f(\varepsilon)$ определялась из решения уравнения с учетом упругих столкновений электронов с молекулами и атомами; возбуждения вращательных, колебательных, электронных $A^3\Sigma_u^+,\ B^3\Pi_g,\ C^3\Pi_u,\ B'^3\Sigma_u^-,\ a'^1\Sigma_u^-,\ W^3\Delta_u,$ $a^{1}\Pi_{g}, w^{1}\Delta_{u}, a''^{1}\Sigma_{g}^{+}$ и ридберговских состояний молекул, а также возбужденных состояний 2P и 2D атомов электронным ударом; процессов диссоциации молекул электронным ударом из основного электронного состояния, а также через электронные уровни с переходом на разлетные термы; процессов ионизации молекул из основного электронного состояния при столкновениях с электронами; процесса ионизации атомов из основного состояния 4S электронным ударом; столкновений второго рода колебательно-возбужденных молекул в основном электронном $X^1\Sigma_g^+$ состоянии (только для первых десяти колебательных уровней) и перечисленных выше электронно-возбужденных состояниях (за исключением состояния $a''^1\Sigma_a^+$) с электронами; столкновений второго рода электронов с атомами в электронно-возбужденных состояниях ^{2}P и ^{2}D .

Уравнение для изотропной части ФРЭЭ в пространственно однородном приближении имело вид [7–9]

$$\frac{E^{2} \cdot \varepsilon}{3 \cdot \sum_{l} N_{l} \cdot \sigma_{ml}(\varepsilon)} \frac{df(\varepsilon)}{d\varepsilon} + \sum_{l} 2 \frac{m}{M_{l}} N_{l} \cdot \varepsilon^{2} \cdot \sigma_{ml}(\varepsilon)$$

$$\times \left[f(\varepsilon) + \frac{T_{g}}{e} \frac{df(\varepsilon)}{d\varepsilon} \right] + N \cdot B_{e} \cdot \varepsilon \cdot \sigma_{rot}(\varepsilon)$$

$$\times \left[f(\varepsilon) + \frac{T_{g}}{e} \frac{df(\varepsilon)}{d\varepsilon} \right] = -\sum_{l} N_{l} \cdot \sum_{i,j} \int_{\varepsilon}^{\varepsilon + \varepsilon_{ij}} \sigma_{ij}(\varepsilon') \cdot \varepsilon' \cdot f(\varepsilon') \cdot d\varepsilon'$$

$$\varepsilon - \varepsilon_{ij}$$

$$-\sum_{i,j} \cdot N_j \cdot \int_{\varepsilon}^{\varepsilon - \varepsilon_{ij}} q_{ij}(\varepsilon') \cdot \varepsilon' \cdot f(\varepsilon') \cdot d\varepsilon'. \tag{3}$$

Здесь m, M_l — масса электрона, молекулы (l = 0) и атома $(l=a);\ N_l$ — концентрации молекул и атомов в основных состояниях; ε — энергия электрона; ε_{ij} изменение энергии электрона при неупругих столкновениях с молекулами и атомами; $\sigma_{ml}(\varepsilon)$ — транспортные сечения рассеяния электронов на молекуле (l = 0) и атоме (l=a) азота; $\sigma_{\rm rot}(\varepsilon)$ — сечение возбуждения вращательных уровней электронным ударом; $\sigma_{ij}(\varepsilon)$ сечение диссоциации, ионизации, возбуждения колебательных и электронных уровней молекулы и атома для прямых реакций; q_{ij} — сечения столкновений второго рода молекул и атомов в электронно-возбужденных состояниях с электронами, которые вычислялись на основе принципа детального равновения; N_j — концентрации молекул и атомов в электронно-возбужденных состояниях, а также колебательно-возбужденных молекул в электронном состоянии $X^1\Sigma_g^+$ для колебательных уровней $1 \le v \le 10$. При расчетах использовался тот же набор сечений, что и в работах [7–9].

Первое слагаемое в левой части уравнения описывает увеличение энергии электронов в поле E, второе выражает потери энергии при упругих столкновениях электронов с молекулами и атомами, третье описывает потери энергии на возбуждение вращательных уровней молекулы азота электронным ударом. Правая часть описывает неупругие столкновения электрон-тяжелая частица, при которых происходит изменение их энергетического состояния (переход из состояния i в состояние j с изменением энергии ε_{ij} или $-\varepsilon_{ij}$ для столкновений второго рода электронов с тяжелыми частицами в возбужденных состояниях). Запись уравнения предполагает, что столкновения между электронами и ионами не учитваются.

Для нормировки ФРЭЭ использовалось условие

$$\int_{0}^{\infty} \sqrt{\varepsilon} \cdot f(\varepsilon) \cdot d\varepsilon = 1. \tag{4}$$

Уравнение Больцмана для ФРЭЭ решалось методом итераций [9]. В качестве нулевого приближения $f(\varepsilon)$ использовалась ФРЭЭ, рассчитанная по методике [24].

Константы скоростей возбуждения электронных состояний молекулы азота без разрешения по колебательным уровням с высоких колебательных уровней основного состояния $X^1\Sigma_g^+$ вычислялись на основе соотношений из работы [25]. Для остальных констант скоростей взаимодействия электрон-тяжелая частица они получались нормированием сечений соответствующих реакций на Φ PЭЭ

$$K_{i} = \sqrt{\frac{2 \cdot e}{m}} \int_{0}^{\infty} \sigma_{ij}(\varepsilon) \cdot \varepsilon \cdot f(\varepsilon) \cdot d\varepsilon. \tag{5}$$

Значения v_{dr} и D/μ определялись на основе соотношений [26]

$$D/\mu = \int_{0}^{\infty} \frac{\varepsilon}{\sigma_{m}(\varepsilon)} f(\varepsilon) \cdot d\varepsilon / \int_{0}^{\infty} \frac{\varepsilon}{\sigma_{m}(\varepsilon)} \frac{df(\varepsilon)}{d\varepsilon} d\varepsilon, \quad (6)$$

$$v_{\rm dr} = 1/3\sqrt{\frac{2 \cdot e}{m}} E/N \int_{0}^{\infty} \frac{\varepsilon}{\sigma_m(\varepsilon)} \left[-\frac{df(\varepsilon)}{d\varepsilon} \right] \cdot d\varepsilon. \tag{7}$$

Уравнения баланса для расчета компонентного состава разряда и нагрева газа

Положительный столб тлеющего разряда характеризуется сложным компонентным составом, многочисленными кинетическими процессами и неоднородным распределением параметров (концентраций молекул, атомов и электронов, температуры газа и т.д.) по своему сечению.

При обработке экспериментальных результатов данной работы и работ [14,22,27,28] учитывались следующие сорта частиц: молекулы азота в основном состоянии $X^1\Sigma_g^+$ (47 колебательных уровней, при этом колебательный уровень v=46 предполагался уровнем диссоциации молекул азота через колебательное возбуждение) и в электронно-возбужденных состояниях $A^3\Sigma_u^+$, $B^3\Pi_g$, $C^3\Pi_u$, $B'^3\Sigma_u^-$, $a'^1\Sigma_u^-$, $W^3\Delta_u$, $a^1\Pi_g$, $w^1\Delta_u$; атомы азота в основном 4S и возбужденных состояниях 2P и 2D ; электроны e. В работах [7,25] перечислены процессы и константы скорости, которые учитывались при описании кинетики в плазме тлеющего разряда.

Кроме этого, в уравнениях баланса для частиц и изменения T_g необходимо рассматривать явления диффузии и переноса, что значительно усложняет решение поставленных выше задач. В работах [29,30] был предложен метод, который позволяет упростить уравнения, содержащие частные производные. В этом подходе система уравнений в частных производных сводится к жесткой системе обыкновенных дифференциальных уравнений, позволяющих описывать изменение параметров плазмы, усредненных по сечению кюветы. В эксперименте измерения параметров разряда, как правило, выполняются вблизи оси разрядной кюветы. Подход, использованный в данной работе, позволяет перейти к жесткой системе обыкновенных дифференциальных уравнений для величин, описывающих состояние плазмы на оси положительного столба плазмы. При этом учитывается отвод тепла и диффузия колебательно-возбужденных молекул и атомов с оси положительного столба с последующей гетерогенной релаксацией молекул и рекомбинацией атомов на стенке кюветы. Подход основывается на предположениях, что в процессе формирования параметров разряда радиальные профили поступательной температуры и концентрации частиц будут близки к стационарным; давление р постоянно вдоль оси положительного столба плазмы; положительный столб характеризуется невысокими значениями скорости потока газа, диссоциации и ионизации газа.

Предполагалось, что в положительном столбе разряда, контролируемого диффузией или рекомбинацией, источники мощности энерговыделения $V_T(r)$ и изменения концентрации молекул и атомов $V_{v,\mathrm{at}}(r)$ в зависимости от радиуса кюветы имеют вид

$$V_{x,T}(r) = V_{x,T}(0) \cdot (1 - (r/R)^{z}). \tag{8}$$

Здесь z является параметром аппроксимации, который определяется из сравнения рассчитанного и измеренного радиального профиля температуры $T_g(r)$. Величины $V_T(0)$ и $V_{v,\mathrm{at}}(0)$ выражают отвод тепла и диффузионный уход с оси разряда колебательно-возбужденных молекул и атомов с последующей гетерогенной релаксацией молекул и рекомбинацией атомов на стенке кюветы. $V_T(0)$ и $V_{v,\mathrm{at}}(0)$ в зависимости от T_g и значений концентраций частиц на оси кюветы в соответствии с вышеупомянутыми предположениями находились из решения уравнений

теплопроводности и диффузии с соответствующими граничными условиями [29,30]

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\cdot D_x\,\frac{\partial N_x}{\partial r}\right) = -V_x(r),\tag{9}$$

$$\frac{\partial N_x}{\partial r}\Big|_{r=0} = 0, \quad D_x \frac{\partial N_x}{\partial r}\Big|_{r=R} = \frac{\gamma_x \cdot \langle v_x \rangle}{4} N_x\Big|_{r=R}, \quad (10)$$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\cdot\chi\frac{\partial T_g}{\partial r}\right) = -V_T(r),\tag{11}$$

$$\frac{\partial T_g}{\partial r}\bigg|_{r=0} = 0, \quad T_g\bigg|_{r=R} = T_w, \quad \chi = \chi_0 \cdot (T_g/273)^a, \quad (12)$$

где для молекул азота $\alpha=0.84$ и коэффициент теплопроводности $\chi_0=2.3\cdot 10^{-4}\, \text{W/(K}\cdot \text{cm)}$ [31].

Величины N_v и $N_{\rm at}$ являются концентрациями колебательно-возбужденных молекул $N_2(X^1\Sigma_g^+,v)$ и атомов $N(^4S)$. D_x являются коэффициентами диффузии молекул и атомов. Для атомов и молекул (независимо от колебательного уровня v) они полагались равными [31]

$$D_v = \frac{136.8}{p} (T_g/273)^{1.5}, \quad D_a = \frac{220.4}{p} (T_g/273)^{1.74},$$
(13)

где p выражено в Тогг, $\langle v_x \rangle$ — средняя тепловая скорость молекул и атомов, γ_x — вероятность дезактивации молекул и рекомбинация атомов на стенке кюветы.

Для рассматриваемых экспериментальных условий в процессе гетерогенной релаксации молекул преобладает физическая адсорбция [1]

$$W + N_2(X^1\Sigma_g^+, v + 1) \Rightarrow W + N_2(X^1\Sigma_g^+, v),$$
 (14)

$$W + N(^{4}S) + N(^{4}S) \Rightarrow W + N_{2}(X^{1}\Sigma_{q}^{+}, v).$$
 (15)

Значение γ_v варьировалось в расчетах от 10^{-4} до 10^{-3} в зависимости от материала кюветы (кварц, стекло либо пирекс). Температура поверхности стенки разрядной кюветы полагалась равной $T_w = 300\,\mathrm{K}$. Значение γ_{at} полагалось равным 10^{-4} [1,4]. Как показывают расчеты, дезактивацией электронно-возбужденных молекул и атомов на стенках кюветы для условий данной работы и экспериментов [14,22,27,28] можно пренебречь по сравнению с объемными процессами их тушения.

Измеренный методом оптической интерферометрии профиль поступательной температуры описывается выражением

$$T_g(r) = T_w \left[1 + \left(1 - (r/R)^2 \right) \frac{\left(0.25 - (r/R)^z / (z+2)^2 \right)}{\left(0.25 - 1(z+2)^2 \right)} \right] \times \left(\left(T_g / T_w \right)^{\alpha+1} - 1 \right)^{\frac{1}{1+\alpha}}.$$
 (16)

При таком профиле $T_g(r)$ для тепловых потерь на оси $V_T(0)$ (в единицах измерения K/s) получается следующее выражение:

$$V_T(0) = \frac{4 \cdot T_w \cdot \chi_0}{R^2 \cdot (1+\alpha)} \left(T_g / T_w \right)^{\alpha} \frac{\left[(T_g / T_w)^{\alpha+1} - 1 \right]}{\left[1 - \frac{4}{(z+2)^2} \right]}. \quad (17)$$

Скорости изменения концентрации молекул в состоянии с колебательным квантовым числом v=0 и атомов (индекс at) за счет диффузионного ухода с оси разряда (в единицах измерения cm $^{-3} \cdot s^{-1}$) записываются в виде

$$V_{0,at} = \frac{N_{1,at}}{\tau_{\nu} + \tau_{D}}.$$
 (18)

Этот член в уравнениях баланса описывает увеличение молекул в состоянии с v=0 за счет VW-дезактивации молекул в состоянии с v=1. Для атомов он описывает уменьшение их концентрации вследствие их рекомбинации на стенке кюветы. Соответствующее выражение для молекул в состояниях с $v\geq 1$ имеет вид

$$V_{v}(0) = \frac{N_{v+1} - N_{v}}{\tau_{v} + \tau_{D}}.$$
 (19)

Характерные времена τ_D и τ_γ для диффузии и VW-дезактивации молекул и рекомбинации атомов на стенке в зависимости от поступательной температуры на оси кюветы представляются в виде

$$\tau_D = \frac{R^2 \cdot [0.25 - 1/(z+2)^2] \cdot [(T_g/T_w)^{1+\alpha} - (T_g/T_w)^{\beta_{v,\text{at}}}]}{D_{v,\text{at}} \cdot [1 - \beta_{v,\text{at}}/(1+\alpha)] \cdot [(T_g/T_w)^{1+\alpha} - 1]},$$

$$\tau_{\gamma} = \frac{4 \cdot R \cdot (0.5 - 1/(z + 2))}{\langle v_{\nu, \text{at}} \rangle \gamma_{\nu, \text{at}}}.$$
 (20)

Таким образом, упрощенные уравнения баланса для концентраций возбужденных частиц и изменения поступательной температуры в изобарическом приближении с учетом найденных выражений $V_{v,at}(0)$ и $V_T(0)$ представляют собой систему жестких обыкновенных дифференциальных уравнений вида

$$\frac{dN_i}{dt} = \sum_{f} \sum_{j} k_{ji}^f \cdot N_j - \sum_{f} \sum_{j} k_{ij}^f \cdot N_i + \sum_{f} \sum_{j} k_{ji}^f \cdot N_i \cdot N_j$$

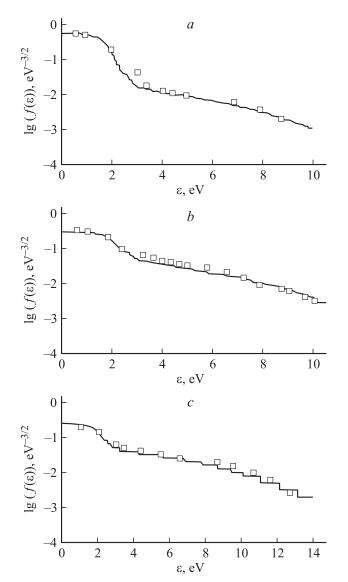
$$- \sum_{f} \sum_{j} k_{ij}^f \cdot N_i \cdot N_j + \sum_{f} \sum_{j} \sum_{l} k_{jil}^f \cdot N_j \cdot N_i \cdot N_l$$

$$- \sum_{f} \sum_{j} \sum_{l} k_{ijl}^f \cdot N_i \cdot N_j \cdot N_l - \frac{N_i}{T_g} \frac{dT_g}{dt} + V_i(0), \quad (21)$$

$$3.5 \cdot k \cdot N \frac{dT_g}{dt} = \sum_{i} \Delta \varepsilon_{ij} \frac{dN_i}{dt} V_T(0). \tag{22}$$

Первые два члена в уравнениях баланса для концентраций возбужденных частиц описывают одночастичные процессы, увеличивающие и уменьшающие концентрации частиц сорта i, в результате которых либо образуется, либо исчезает частица сорта j. Так описываются радиационные переходы. Третий и четвертый члены описывают соответствующие двухчастичные процессы, которыми являются возбуждение и девозбуждение молекул и атомов электронным ударом. Так же описывается одноквантовая VT-релаксация молекул на молекулах и атомах, одноквантовый VV-обмен, диссоциация молекул, обменные реакции между молекулами и атомами

в основном и в электронно-возбужденных состояниях. Пятый и шестой члены описывают трехчастичные процессы — рекомбинацию атомов азота в основном и электронно-возбужденных состояниях. Суммирование по индексам j и l идет по сортам взаимодейструющих частиц. Последние два члена описывают изменение частиц в результате теплового расширения элементарного объема газа и диффузии возбужденных молекул и атомов на стенку разрядной кюветы с последующей WV-гетерогенной релаксацией. Индекс f относится к типу реакции, протекающей между указанными компонентами, поскольку для одной и той же пары частиц возможны несколько видов реакций.


При численном моделировании ФРК величина константы скорости VV-обмена K_{10}^{01} варьировалась до достижения наилучшего согласия с результатами измерений колебательной температуры T_v .

Основными процессами в уравнении для изменения поступательной температуры, отвечающими за нагрев газа в разряде, ограниченном стенками, являются VT-релаксация возбужденных молекул на молекулах и образующихся атомах, потери колебательной энергии в результате VV-обмена между молекулами, упругие столкновения электронов с молекулами и атомами, возбуждение вращательных уровней молекул электронным ударом и тепловые потери за счет наличия пространственного градиента поступательной температуры. В предлагаемой модели также учитываются процессы с участием молекул и атомов в возбужденных состояниях, которые могут приводить к заметному изменению заселенностей колебательных уровней при формировании ФРК и тем самым косвенно влиять на динамику нагрева газа. С другой стороны, в связи с неопределенностью величины доли энергии, переходящей непосредственно в тепло при столкновениях молекул основном $X^1\Sigma_g^+$ и метастабильных состояниях $A^3\Sigma_u^+$ и $B^3\Pi_g$ [16,17], прямой вклад в нагрев газа этих процессов подробно не анализировался и является предметом дальнейших исследований. Следует добавить, что влиянием процесса ионизации молекул и атомов на нагрев газа в разряде также пренебрегалось.

Система уравнений решалась численно методом, предложенным в [32]. В начальный момент времени ФРК соответствовала распределению Больцмана при значении $T_g=300\,\mathrm{K}$. Величины концентраций атомов, молекул в электронно-возбужденных состояниях полагались равными нулю. В процессе интегрирования уравнений для концентраций частиц константы скорости колебательного возбуждения молекул пересчитывались в зависимости от изменения колебательной температуры первого уровня $(300 \leq T_v \leq 6000\,\mathrm{K})$ и поступательной температуры $(300 \leq T_g \leq 6000\,\mathrm{K})$ во времени.

Результаты и обсуждение

Функция распределения электронов по энергиям. На рис. 3, a–c приведено сравнение результатов расчетов и зондовых измерений ФРЭЭ [10,11], по-

Рис. 3. ФРЭЭ в плазме тлеющего разряда в азоте. $a - E/N = 60 \,\mathrm{Td}, \ T_v = 3800 \,\mathrm{K}; \ b - E/N = 80 \,\mathrm{Td}, \ T_v = 4000 \,\mathrm{K}; \ c - E/N = 140 \,\mathrm{Td}, \ T_v = 4000 \,\mathrm{K}.$ Сплошные линии — расчет, значки — эксперимент [10,11].

лученных для квазистационарного режима горения тлеющего разряда. Для $E/N=60-140\,\mathrm{Td}$ хорошее согласие результатов расчета с экспериментом достигается при значении $T_v\approx 3800-4000\,\mathrm{K}$. Именно такие значения колебательной температуры получены для рассматриваемых условий методом спектроскопии КАРС (табл. 1).

В квазистационарном режиме горения плазмы разряда существенную роль в перераспределении заселенностей N_0 и N_1 по колебательным уровням наряду с неупругими столкновениями молекул с электронами играет близкий к резонансному VV-обмен. Поэтому величина T_v зависит от значения константы скорости VV-обмена K_{10}^{01} . Для того чтобы обеспечить корреляцию между экспериментальными и расчетными данными одновременно для Φ PK по нижким уровням и Φ PЭЭ, наряду с величиной σ_{Σ} варьировалась

и K_{10}^{01} . Величина σ_{Σ} варьировалась в пределах $3-13.3\,\text{Å}^2$ (см. [5] и цитированную там литературу). Диапазон варьирования K_{10}^{01} , согласно [6,33–36], составлял $9\cdot 10^{-15}-1.5\cdot 10^{-13}\,\text{cm}^3/\text{s}$. Наилучшее согласие расчетов ФРЭЭ с измерениями достигается при значении $\sigma_{\Sigma}=9-10.6\,\text{Å}^2$ и $K_{10}^{01}=9\cdot 10^{-15}\,\text{cm}^3/\text{s}$, что практически совпадает с рекомендациями работ [5,6] соответственно.

Таким образом, теория и эксперимент подтверждают наличие дополнительного механизма, связанного с процессом VV-обмена энергией между молекулами на нижних уровнях, который косвенно влияет на вид ФРЭЭ. Только одновременный учет столкновений первого и второго рода электронов с колебательно-возбужденными молекулами и VV-обмена на уровнях с квантовыми числами v=0 и 1 позволяет достичь согласованности описания кинетики электронного компонента и колебательной кинетики для условий неравновесной плазмы тлеющего разряда.

Согласно расчетам, для рассматриваемых экспериментальных условий влияние образования атомов на Φ PЭЭ несущественно при степени диссоциации молекул $\leq 10^{-3}$. VT-релаксация молекул азота на атомах также не влияет на Φ PK первых восьми–десяти колебательных уровней и соответственно на Φ PЭЭ.

С увеличением $E/N > 70\,\mathrm{Td}$ значительная доля энергии электронов затрачивается на возбуждение электронных степеней свободы, диссоциацию и ионизацию молекул. При E/N = 80 и $140\,\mathrm{Td}$ вариация колебательной температуры не вызывает заметного изменения вида ФРЭЭ. Рис. 3,b и c показывает, что хорошее согласие между расчетом и экспериментом имеет место при значениях колебательной температуры, не превышающей $4000\,\mathrm{K}$.

Расчеты дрейфовой скорости $v_{\rm dr}$ и характеристической температуры D/μ электронов хорошо согласуются со справочными данными [26] в диапазоне $E/N=10-85\,{
m Td}.$

Функция распределения молекул по колебательным уровням и нагрев газа. Результаты расчетов T_g и T_v и ФРК сравниваются с результатами измерений данной работы и работ [14,22,27,28] в табл. 1 и на рис. 4. Рис. 5 показывает временную эволюцию T_g от момента инициирования разряда до установления стационарных значений.

Экспериментальные данные, приведенные в табл. 1, были получены на оси разрядной кюветы в положительном столбе плазмы тлеющего разряда. Верхние индексы ОИ и КАРС у значений T_g и T_v показывают, что эти величины были измерены методами оптической интерферометрии и спектроскопии КАРС соответственно.

Значения $T_g^{\rm KAPC}$ и $T_v^{\rm KAPC}$ определялись по заселенностям вращательных и первых двух колебательных уровней, восстановленным из измеренных спектров КАРС. На рис. 4 сплошные линии обозначают расчет ФРК согласно кинетической модели и распределениям Больцмана и Тринора.

Время пребывания молекул азота в разрядной зоне t, представленное в табл. 1, совпадает с характерным

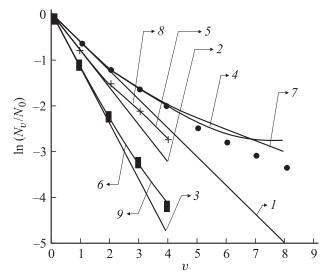
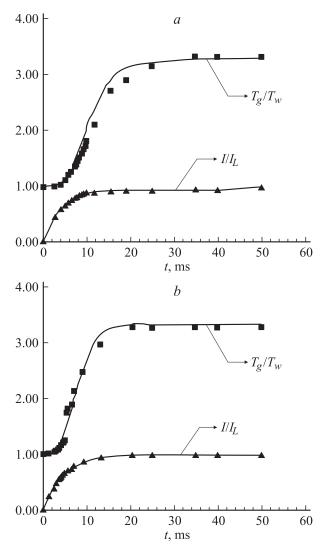


Рис. 4. ФРК в тлеющем разряде. Значки — эксперимент:
■ — [27], + — [22], • — [28]. Сплошные линии — расчет.
Больщмановское распределение: $I - T_v = 5300$, 2 - 4320, 3 - 2850 К. Триноровское распределение: $4 - T_v = 5300$ К и $T_g = 530$ К, $5 - T_v = 4320$ К и $T_g = 530$ К, $6 - T_v = 2850$ К и $T_g = 395$ К. 7-9 — результаты расчета по приведенной модели. v — колебательное число.


временем установления квазистационарных значений T_g и T_v , характеризующих ФРК в положительном столбе. Квазистационарное значение T_g представлено в табл. 1 и на рис. 5, a, b при давлениях 15 и 20 Тогг. На этом же рисунке также представлена экспериментальная зависимость изменения силы тока от времени, которая использовалась при расчете T_g . Расчеты и измерения T_g и T_v показывают, что формирование квазистационарной ФРК для первых двух колебательных уровней и установление T_g в условиях данной работы происходят за время, не превышающее $\propto 15-20$ ms.

Время установления значений T_g и T_v зависит от условий эксперимента и прямо либо косвенно определяется значениями давления газа p, температуры стенки разрядной кюветы T_w , концентрации электронов N_e и приведенного электрического поля E/N (характеристиками источника питания, поддерживающего разряд), вероятности гетерогенной дезактивации колебательной энергии молекул γ_v , радиуса разрядной кюветы R, длины положительного столба плазмы L и скорости протока газа. Эти исходные параметры представлены в табл. 1. Сюда же следует добавить такие важные характеристики, как константы скорости реакций K_i , которые определяются Φ PЭЭ, E/N, T_g и T_v , а также сечениями упругих и неупругих процессов.

В скобках рядом с T_g и T_v приведены значения вероятности гетерогенной дезактивации колебательной энергии молекул γ_v , при которых они были рассчитаны. Расчеты временной эволюции ФРК и нагрева газа (рис. 4 и 5) были проведены с использованием константы скорости VV-обмена K_{01}^{10} из [6,25,33]. Кроме того, была использована предложенная в [37] аппроксимация констант

скоростей VV-обмена в зависимости от значений v и T_g , которая была несколько модифицировна в данной работе. Это позволило получать количественное согласие с экспериментальными данными.

Рис. 6 иллюстрирует результаты расчетов временной эволюции ФРК с целью анализа процесса нагрева газа. На временах $t \approx 10^{-7}-2.0\cdot 10^{-3}\,\mathrm{s}$ (сплошные линии I-5) происходит интенсивная передача энергии электронов в колебательное возбуждение молекул в состоянии с v=1-10 (eV-процессы). Заселенности этих уровней имеют больцмановское распределение с колебательной температурой, которая заметно отличается от значения колебательной температуры первого колебательного уровня T_v . Наличие излома в форме ФРК свидетельствует о том, что начальная стадия ее эволюции обусловлена главным образом возбуждением и девозбуждением колебательных состояний молекул

Рис. 5. Зависимость силы тока I/I_L и температуры газа T_g/T_v от времени на стадии формирования разряда: значки — эксперимент, сплошные линии — аппроксимация I/I_L и расчет T_g/T_w , $a-p=20\,\mathrm{Torr}$ и $I_L=30\,\mathrm{mA},\ b-p=15\,\mathrm{Torr}$ и $I_L=50\,\mathrm{mA}.$

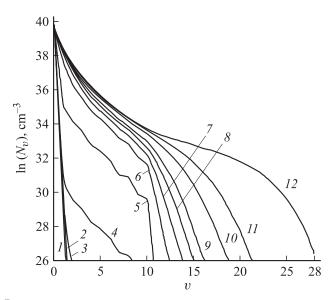

Экспериментальные данные		Расчет T_v , K по данным $K_{10}^{01} \cdot 10^{-14}$, cm 3 /s из литературы							
		[6,25,33]	[13]	[34]	[35]	[36]			
p, Torr	T_v , K	0.9	2.6	5.0	10	15			
3.5	3790 ± 350	3764	3384	3266	3147	3093			
7	4320 ± 360	4230	3642	3495	3356	3278			
9.5	4270 ± 370	4183	3578	3451	3330	3266			

Таблица 2.

электронным ударом. Следует отметить, что результаты расчета ФРК на начальной стадии нагрева газа в плазме тлеющего разряда находятся в хорошем качественном согласии с результатмии работы [25].

Начиная с момента времени $t \approx 3 \cdot 10^{-3}$ s (сплошная линия 6), перераспределение молекул по нижним колебательным уровням обусловливается конкуренцией eV-процессов и близкого к резонансному VV-обмена. ФРК нижних уровней v=1-5 хорошо аппроксимируется распределением Тринора, которому она следует и в последующие моменты времени, с изменением T_g и T_v .

Расчеты показывают, что в рамках предлагаемой модели при радиусе газоразрядной кюветы $R=1.8\,\mathrm{cm}$ в диапазоне давлений от 3.5 до 9 Тогг влияние процессов WV-дезактивации и диффузии молекул на заселенности колебательных уровней v=1-5 невелико по сравнению с процессами резонансного VV-обмена и eV-процессами. При $t\geq 3\cdot 10^{-3}\,\mathrm{s}$ вид ФРК для невысоких уровней оказывается слабо чувствительным к способу накачки колебательных уровней. Это связано с тем, что характерные времена перераспределения молекул азота по нижним уровням вследствие резонансного VV-обмена становятся существенно меньше, чем характерное время процессов VW-дезактивации и диффузии молекул, а также

Рис. 6. Расчет ФРК на стадии нагрева газа при p=7 Torr. $1-10^{-7},\ 2-10^{-6},\ 3-10^{-4},\ 4-10^{-3},\ 5-2\cdot 10^{-3},\ 6-3\cdot 10^{-3},\ 7-4\cdot 10^{-3},\ 8-6\cdot 10^{-3},\ 10-8\cdot 10^{-3},\ 11-15\cdot 10^{-3},\ 12-15.5\cdot 10^{-3}$ s.

процессов возбуждения и девозбуждения колебательновозбужденных молекул электронным ударом [1]. Прямым свидетельством доминирующей роли процессов VV-обмена является триноровский вид ФРК, показанной на рис. 6 (сплошные линии 4–6), и слабая зависимость значений колебательной температуры от изменения вероятности дезактивации γ_v молекул в пределах порядка (табл. 1).

В табл. 2 приведены константы скоростей K_{10}^{01} VV-обмена, при которых проводилось сопоставление измеренных и рассчитанных квазистационарных значений колебательной температуры T_v . С ростом величины константы скорости VV-обмена K_{10}^{01} значение колебательной температуры T_v заметно уменьшается. Сопоставление экспериментальных и расчетных значений колебательной температуры свидетельствует об их количественном согласии при значении константы скорости VV-обмена энергией между молекулами азота $K_{10}^{01} = 9 \cdot 10^{-15} \, \mathrm{cm}^3/\mathrm{s}$, что соответствует измерениям и расчетам [6,25,33]. Следует отметить, что использованная здесь модель кинетики, в рамках которой рассчитывается $\Phi P \ni 3$, приводит к тем же результатам, которые были получены в работе [6], где $\Phi P \ni 3$ полагалась максвелловской.

Табл. 1 иллюстрирует возможности кинетической модели. Видно, что рассчитанные значения колебательной температуры T_v на порядок превосходят значения поступательной температуры T_g . При увеличении давления от 3 до 10 Тогг колебательная температура изменяется в пределах от 3700 до 4400 К.

Для экспериментальных условий [28] значения колебательной температуры превосходят результаты ее измерения, полученные в работе [22]. Это объясняется тем, что величина концентрации электронов в [28] заметно выше, чем ее значение, определенное в эксперименте [22]. Из табл. 1 видно, что вследствие малой величины радиуса разрядной кюветы в работе [28] увеличение вероятности дезактивации γ_v приводит к заметному уменьшению значений T_g и T_v . Кроме этого, как видно из рис. 4, для v > 6 измеренная в работе [28] ФРК заметно отличается от распределения Тринора. В этом случае отличить эффекты, обусловленные VV-обменом и возбуждением и девозбуждением колебательных уровней молекул азота электронным ударом, от эффектов, вызванных процессами на стенке газоразрядной кюветы, становится сложно. Однако с увеличением давления, как показывают расчеты значений T_g и T_v , для экспериментальных условий [22], зависимость этих величин от вероятности дезактивации γ_v становится менее очевидной.

Рис. 6 показывает, что для моментов времени, заметно превышающих $t \approx 3 \cdot 10^{-3}$ s, за счет быстрого VV-обмена молекулы с нижних колебательных уровней переходят на верхние колебательные уровни $v \ge 10$, формируя плато Φ РК (кривые 6-12). В процессе образования плато на верхних колебательных уровнях ФРК, как видно из рис. 5, наблюдается повышение T_{σ} . Вид ФРК обусловлен конкуренцией процессов нерезонансного VV-обмена энергией между молекулами и VT-процессами, формирующими хвост функции распределения в области v > 15, которая хорошо аппроксимируется распределением Больцмана с температурой, близкой к поступательной. При этом основную роль в приращении T_g играет нерезонансный VV-обмен между молекулами, который обусловливает передачу значительной части энергии из колебательных степеней свободы в поступательные вследствие ангармонизма колебаний мо-

Расчеты показывают, что в интервале времени приблизительно от 4 до $10\,\mathrm{ms}$ (сплошные линии 7-I0) для экспериментальных условий данной работы при использовании констант скоростей VV-обмена, предложенных в работах [6,25,33] с аппроксимацией [37], рассчитанная и измеренная скорости роста T_g совпадают и оказываются приблизительно равными $\approx 50\,\mathrm{K/ms}$. Скорость роста T_g связана с процессами нерезонансного VV-обмена между молекулами на нижних и высоколежащих колебательных уровнях 10 < v < 15. В диапазоне изменения $T_g = 300-500\,\mathrm{K}$ вклад в нагрев процессов VT-релаксации молекул на молекулах и атомах азота составляет менее нескольких процентов от общей мощности энерговклада в поступательно-вращательные степени свободы.

Образование атомов в условиях данной работы происходит главным образом в результате прямой диссоциации электронным ударом, а также через электронные уровни с переходом на отталкивательные термы. Роль реакций диссоциации молекул через колебательное возбуждение и убыль атомов вследствие объемной рекомбинации невелика. Согласно расчетам, степень диссоциации, достигаемая в положительном столбе тлеющего разряда к $t \propto 10\,\mathrm{ms}$, не превышала $10^{-6}-10^{-4}$. Таким образом, в рамках рассматриваемой модели при полученной степени диссоциации молекул азота значимость каналов VT-релаксации молекул на атомах азота невелика и не оказывает существенного влияния на степень колебательного возбуждения и динамику нагрева газа.

Процессы с участием молекул и атомов азота в электронно-возбужденных состояниях, перечень которых приведен в работе [25], также не вносят существенных изменений в результаты расчета нагрева газа. Так, процесс, описывающий заселение электронновозбужденного состояния молекулы азота $B^3\Pi_g$ через столкновения молекул в состояниях $A^3\Sigma_u^+$ и $X^1\Sigma_g^+$ (3 < v < 15), слабо влияет на динамику нагрева азота. Не играют заметной роли в нагреве газа и реакции с участием атомов в метастабильном состоянии 2P и

молекул в состояниях $X^1\Sigma_g^+$ для v>8, а также реакции с участием молекул в состоянии $A^3\Sigma_u^+$.

Тепловые потери, рассчитанные для экспериментальных условий, реализованных в настоящей работе, достигают к моменту времени $8-10\,\mathrm{ms}$ величины, составляющей не более 20% от мощности энерговыделения за счет процессов нерезонансного VV-обмена.

При $T_g \ge 600 - 1000 \, \mathrm{K}$ вклады процессов VT-релаксации молекул на молекулах и VV-обмена между молекулами становятся соизмеримыми и приблизительно компенсируются тепловыми потерями. С ростом давления от 7 до 30 Torr измеренные и рассчитанные значения T_g , соответствующие квазистационарному распределению параметров плазмы тлеющего разряда, монотонно увеличиваются от 450 до 1300 К. При p > 10 Torr, несмотря на различие в радиусе разрядных кювет, при одних и тех же значениях силы разрядного тока — $50\,\text{mA}$ и $E/N = 50-60\,\text{Td}$ рассчитанные и измеренные в данной работе и в работе [14] значения T_g слабо различаются. Это связано с тем, что режим горения разряда является контрагированным. Наблюдения показывают, что при *p* > 15 Torr в тлеющем разряде область видимого свечения в виде шнура локализуется на оси разрядной кюветы. В этом случае тепловой баланс положительного столба в квазистационарном режиме главным образом определяется релаксационными процессами, происходящими в небольшой области, локализованной вблизи оси разряда, где концентрация электронов максимальна. Тепловой баланс в малой степени зависит от режима охлаждения стенок разрядной кюветы. Как видно из табл. 1, для $t > 20 \,\mathrm{ms}$ наблюдается количественное согласие значений T_{ϱ} , измеренных в данной работе и работе [14] и рассчитанных с использованием констант скоростей колебательно-поступательной релаксации из [37].

Надо отметить, что изменение набора констант скоростей и сечений, использовавшихся в кинетической модели, может привести к некоторым расхождениям с результатами данной работы. Особое внимание следует обратить на процессы с высокими порогами возбуждения, корректное описание которых требует исследования высокоэнергетической части ФРЭЭ.

Авторы выражают благодарность Ю.А. Лебедеву за поддержку работы и полезные обсуждения.

Работа поддержана грантами РФФИ (№ 02-02-16021), NOW-РФФИ 047.016.019 и программой фундаментальных исследований президиума РАН № 20 "Взаимодействие плазмы с высокоскоростными потоками газа".

Список литературы

- [1] Словецкий Д.И. Механизмы химических реакций в неравновесной плазме. М.: Наука, 1980. 310 с.
- [2] *Райзер Ю.П.* Физика газового разряда. М.: Наука, 1987, 592 с.
- [3] Голубовский Ю.Б., Кудрявцев А.А., Порохова И.А. и др. // Энциклопедия низкотемпературной плазмы / Под ред. В.Е. Фортова. М.: Наука, 2000. Вводный том 2. С. 18–43.

- [4] Неравновесная колебательная кинетика / Под ред. М. Капителли. М.: Мир, 1989. 392 с.
- [5] Гордеев О.А., Хмара Д.В. // ТВТ. 1994. Т. 32. Вып. 1. С. 133–134.
- [6] Гордеев О.А., Шахатов В.А. // ЖТФ. 1995. Т. 65. Вып. 7. С. 40–51.
- [7] Бодроносов А.В., Верещагин К.А., Гордеев О.А. и др. // ТВТ. 1996. Т. 34. № 5. С. 666–675.
- [8] Гордеев О.А. // Энциклопедия низкотемпературной плазмы / Под ред. В.Е. Фортова. М.: Наука, 2000. Вводный том 3. С. 266–272.
- [9] *Гордеев О.А., Хмара Д.В.* // Математическое моделирование. 2001. Т. 13. № 9. С. 3–22.
- [10] *Иванов Ю.А., Лебедев Ю.А., Полак Л.С.* Методы контактной диагностики в неравновесной плазмохимии. М.: Наука, 1981. 133 с.
- [11] Иванов Ю.А., Полак Л.С., Словецкий Д.И. // ТВТ. 1971. Т. 9. № 6. С. 1151–1158.
- [12] Косоручника А.Д. // ЖТФ. 1975. Т. 45. Вып. 5. С. 1077– 1081.
- [13] Акишев Ю.С., Демьянов А.В., Кочетов И.В. // ТВТ. 1982. Т. 20. № 5. С. 818–827.
- [14] Голубовский Ю.Б., Тележко В.М. // Опт. и спектр. 1983. Т. 54. С. 60–67.
- [15] Brunet H., Rocca-Serra J. // J. Appl. Phys. 1985. Vol. 57. N 5. P. 574–1581.
- [16] Boeuf J.P., Kunhardt E.E. // J. Appl. Phys. 1986. Vol. 60. N 3. P. 915–923.
- [17] Зарин А.С., Кузовников А.А., Шибков В.М. Свободно локализованный СВЧ разряд в воздухе. М.: Нефть и газ, 1996. 204 с.
- [18] Golubovskii Yu.B., Maiorov V.A., Behnke J. et al. // Joint 16th Conf. ESCAMPIG and 5th ICRP. Grenoble, 2002. Vol. 1. P. 233–234.
- [19] Golubovskii Yu.B., Kozakov R.V., Maiorov V.A. et al. // Ibid. Vol. 2. P. 127–128.
- [20] *Диагностика* плазмы / Под ред. Р. Хадлстоуна, С.М. Леонарда. М.: Мир, 1967. 515 с.
- [21] Островский Ю.И., Бутусов М.М., Островская Г.В. Голографическая интерферометрия. М.: Наука, 1977. 366 с.
- [22] *Бодроносов А.В., Верещагин К.А., Горшков В.А.* и др. // ЖТФ. 1994. Т. 64. Вып. 1. С. 47–55.
- [23] Shakhatov V.A., De Pascale O., Capitelli M. Frontiers in Low Temperature Plasma Diagnostics / Ed. De Benedictis S. Proc. Villagio Cardigliano Specchia (LE). Italy, 2003. P. 204–207.
- [24] Дынникова Г.Я. // ПМТФ. 1988. № 5. С. 3-9.
- [25] Верещагин К.А., Смирнов В.В., Шахатов В.А. // ЖТФ. 1997. Т. 67. Вып. 5. С. 34–42.
- [26] Хаксли Л., Кромптон Р. Диффузия и дрейф электронов. М.: Мир, 1977. 637 с.
- [27] Смирнов В.В., Фабелинский В.И. // Письма в ЖЭТФ. 1978. Т. 28. Вып. 7. С. 461–465.
- [28] *Massabieaux B., Gousset G., Lefebvre M.* et al. // J. Physique. 1987. Vol. 48. P. 1939–1949.
- [29] Гершензон Ю.М., Розенитейн В.Б., Уманский С.Я. // Химия плазмы. М.: Атомиздат, 1977. Вып. 4. С. 61–67.
- [30] Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1967, 491 с.
- [31] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат. 1991. 1232 с.
- [32] Полак Л.С., Гольденберг М.Я., Левицкий А.А. Вычислительные методы в химической кинетике. М.: Наука, 1984. 280 с.

- [33] Billing G.D., Fisher E.R. // Chem. Phys. 1979. Vol. 43. P. 395–401.
- [34] Девятов А.А., Доленко С.А., Рахимов А.Т. и др. // ЖЭТФ. 1986. Т. 90. Вып. 2. С. 429–436.
- [35] Валянский С.И., Верешагин К.А., Волков А.Ю. и др. // Квантовая электрон. 1984. Т. 11. № 9. С. 1833–1836.
- [36] Валянский С.И., Верешагин К.А., Волков А.Ю. и др. / Препринт ИОФ АН СССР. М.: ИОФ АН, 1984. № 109. 48 с
- [37] Zhuk Yu.N., Klopovskii K.S. // Chem. Phys. Lett. 1988.
 Vol. 153. N 2, 3. P. 181–184.