06:07

Генерация излучения на разностной частоте среднего и дальнего инфракрасных диапазонов в полупроводниковых волноводах на основе фосфида галлия

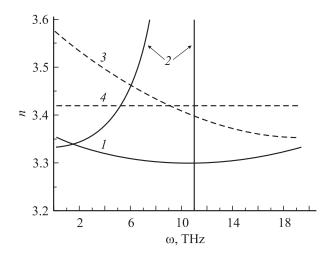
© В.Я. Алешкин, 1 А.А. Афоненко, 2 А.А. Дубинов 1

Институт физики микроструктур РАН,
 603950 Нижний Новгород, Россия
 e-mail: sanya@ipm.sci-nnov.ru
 Белорусский государственный университет,
 220050 Минск, Белоруссия

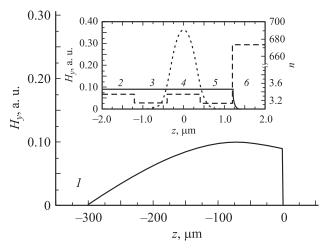
(Поступило в Редакцию 31 октября 2005 г.)

Рассмотрена возможность эффективной генерации излучения на разностной частоте среднего и дальнего ИК-диапазонов при выполнении условия фазового синхронизма между волной нелинейной поляризации и разностной модой при распространении в полупроводниковом волноводе на основе фосфида галлия (GaP) двух фундаментальных мод в диапазоне $1\,\mu$ m. В планарном волноводе с шириной $100\,\mu$ m при мощностях коротковолновых мод $10\,W$ мощность разностной моды может достигать до $300\,\mu$ W в области частот $1-8\,\text{THz}$ при комнатной температуре. При использовании подложки из кремния для структуры с GaP-волноводом мощность разностной моды при тех же условиях может достигать до $5\,\text{mW}$ в области частот $10-14\,\text{THz}$.

PACS: 42.55.Dx


Несмотря на то что компактные источники излучения в терагерцовом диапазоне частот в настоящее время очень востребованы для различных нужд, количество таких источников мало. Полупроводниковые лазеры традиционных конструкций могут излучать только в ближнем инфракрасном (ИК) и видимом диапазоне частот вследствие увеличения роли безызлучательной Оже-рекомбинации при использовании полупроводников с малой шириной запрещенной зоны. На сегодняшний день наиболее значительные результаты достигнуты в области создания квантовых каскадных полупроводниковых лазеров [1]. Однако чрезвычайно сложная зонная схема каскадных структур и высокие требования по контролю параметров сдерживают их распространение и использование.

Альтернативным выходом из этой сложной ситуации является отказ от создания инверсии населенностей близлежащих межзонных и внутризонных уровней и разработка безынверсных схем генерации, в которых дальнее или среднее ИК-излучение создавалось бы вследствие квадратичной нелинейности полупроводниковой структуры благодаря выделению разностной частоты $\omega = \omega_2 - \omega_1$ при смешивании двух полей на частотах ω_1 , ω_2 ближнего ИК-диапазона. Отметим, что в настоящее время наиболее мощные полупроводниковые лазеры генерируют излучение именно в области длины волны $1\,\mu\mathrm{m}$ [2].


Природа решеточной нелинейной восприимчивости второго порядка полярных полупроводников A_3B_5 — ангармоничность оптических колебаний решетки, поэтому имеется резонанс нелинейной восприимчивости при воздействии двух коротковолновых волн (ближнего

ИК-диапазона) большой амплитуды и разницы частот, лежащей в окрестности частоты поперечного оптического фонона. Зависимость тензора нелинейной диэлектрической проницаемости второго порядка от частоты волн, воздействующих на среду, в полупроводниках А₃В₃ была рассмотрена в работе [3]. Из всей группы полупроводников АзВ5 наиболее подходящим видится использование в качестве нелинейного элемента GaP, так как он обладает достаточно большой решеточной нелинейностью второго порядка [4]. Кроме того, для эффективной параметрической генерации необходимо выполнение условия фазового синхронизма, заключающегося в равенстве фазовых скоростей волны нелинейной поляризации, возникающие при взаимодействии мод ближнего ИК-диапазона из-за решеточной нелинейности и разностной моды. Для генерации излучения в дальнем ИК-диапазоне условие фазового синхронизма может быть выполнено в обычном диэлектрическом волноводе на основе GaP, в котором смешиваются две коротковолновые моды в области длины волны $1 \mu m$, без сложных конструкций, необходимых при использовании волновода на основе GaAs [5-8]. Причина этого состоит в том, что в GaP частотная дисперсия в области длин волн около 1 μ m из-за значительного удаления от края собственного поглощения небольшая, и групповой показатель преломления ($n_g = 3.3 - 3.5$), а вместе с ним и эффективный показатель преломления нелинейной поляризации $n_{nl} = (n_2\omega_2 - n_1\omega_1)/(\omega_2 - \omega_1)$ оказываются значительно меньше, чем в GaAs, где $n_g \approx 4$ (рис. 1).

Волновод для коротковолнового излучения можно сформировать путем заключения слоя GaP в слои AlGaP с меньшим показателем преломления. AlGaP доста-

Рис. 1. Частотные зависимости эффективного показателя преломления для нелинейной поляризации при взаимодействии высокочастотных волн в GaP при $\lambda_1=0.95~(I)$ и $0.97~\mu m~(3)$ и показателей преломления GaP (2) и Si (4).

Рис. 2. Зависимости от координаты напряженности магнитного поля разностной моды (сплошная кривая), а также показателя преломления n (штриховая кривая на вставке) на частоте 1.8 THz для рассматриваемой структуры. Пунктирной линией на вставке показана амплитуда высокочастотных мод в условных единицах. Слой 1— воздух, 2 и 4— GaP, 3 и 5— AlP, 6— металл. Толщина слоя 2— 300; 3, 4 и 5— $0.8 \, \mu$ m. На вставке изображена область волновода для коротковолновых мод.

точно хорошо согласован по размеру решетки с GaP $(a_{\rm GaP}=0.54506~{\rm nm},~a_{\rm AlP}=0.54635~{\rm nm})$ [4]. Волноводом же для излучения дальнего ИК-диапазона может служить достаточно толстая полуизолирующая подложка GaP, примыкающая к одному обкладочному слою AlGaP. Для увеличения амплитуды разностной моды в области нелинейного взаимодействия мод целесообразно нанести металл на поверхность другого обкладочного слоя AlGaP, тем самым создав условия для возбуждения поверхностной плазмонной моды. Преимуществом пред-

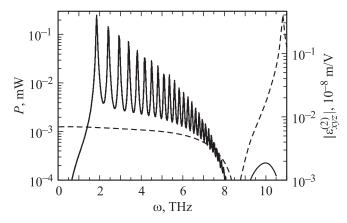
лагаемого способа является то, что для возбуждения разностной длинноволновой моды предлагается использование двух фундаментальных коротковолновых мод на частотах ω_1, ω_2 , и поэтому интеграл перекрытия в поперечном направлении коротковолновых мод не мал (коротковолновые моды не ортогональны).

В случае, когда структура волновода (рис. 2) выращена на плоскости (001), а высокочастотные моды имеют ТЕ-поляризацию и распространяются вдоль направления [110], нелинейная поляризация в GaP перпендикулярна плоскости слоев в возбуждает на разностной частоте ТМ-моду (как в GaAs) [5]. В материалах со структурой цинковой обманки тензор нелинейной диэлектрической проницаемости второго порядка имеет равные и отличные от нуля компоненты с тремя разными индексами [9] $\varepsilon_{xyz}^{(2)}$ (в системе координат, где оси X,Y,Z направлены вдоль кристаллографических направлений [100], [010], [001] соответственно). Коодринатная зависимость напряженности магнитного поля генерируемой волны H_y при этом находится из следующего уравнения:

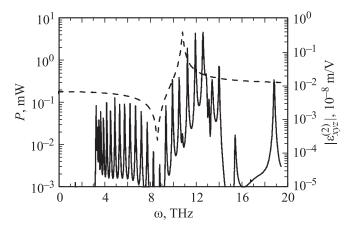
$$\varepsilon(z,\omega) \frac{d}{dz} \left[\frac{1}{\varepsilon(z,\omega)} \frac{dH_y}{dz} \right] + \left(\varepsilon(z,\omega) \frac{\omega^2}{c^2} - k_x^2 \right) H_y$$

$$= -2\varepsilon_{xyz}^{(2)} \frac{k_x \omega}{c} A_1^*(z) A_2(z). \tag{1}$$

Координатная зависимость амплитуд электрического поля коротковолновых мод A_1 , A_2 и разность их постоянных распространения $k_x = k_2 - k_1$ находятся путем решения волнового уравнения с соответствующим профилем показателя преломления [5]. Компонента электрического поля разностной моды E_z и ее мощность определяются из равенств:


$$E_z = -rac{1}{arepsilon(z,\omega)} igg(rac{ck_x}{\omega}H_y + 2arepsilon^{(2)}A_1^*(z)A_2(z)igg)$$

 \mathbf{V}


$$P = -\frac{cL_y}{2\pi} \int_{-\infty}^{\infty} \text{Re}(H_y E_z^*) dz.$$
 (2)

В расчетах использовались показатели преломления GaP и AlP от частоты для коротковолновых мод из работы [4]. Диэлектические проницаемости слоев в среднем и дальнем ИК-диапазонах вычислялись по формуле (26) из работы [10] с использованием данных [4]. Зависимость модуля компоненты тензора нелинейной восприимчивости второго порядка GaP описывалась формулой (3.47) работы [3] и изображена на рис. 3 и 4.

Результаты расчетов мощности разностной моды для предложенной структуры при мощности генерации коротковолновых мод $10\,\mathrm{W}$ в диапазоне $0.95\,\mu\mathrm{m}$ представлены на рис. 3. В расчетах наибольшая длина волны (λ_1) для коротковолновых мод фиксировалась, при этом изменение длины волны разностной моды достигалось за счет изменения длины волны другой коротковолновой

Рис. 3. Зависимость мощности разностной моды для структуры на подложке из GaP (сплошная кривая, $\lambda_1=0.95\,\mu\mathrm{m}$), а также зависимость модуля компоненты тензора нелинейной восприимчивости GaP $\varepsilon_{xyz}^{(2)}$ (штриховая кривая) от частоты разностной моды.

Рис. 4. Зависимость мощности разностной моды для структуры на подложке из Si (сплошная кривая, $\lambda_1=0.97\,\mu\mathrm{m}$), а также зависимость модуля компоненты тензора нелинейной восприимчивости GaP $\varepsilon_{xyz}^{(2)}$ (штриховая кривая) от частоты разностной моды.

моды. Зависимость мощности от частоты разностной моды имеет большое число резонансных пиков, каждый из них соответствует моде волновода, что связано с большой шириной волновода (околов 300 μ m). Из рисунка видно, что максимальная мощность в такой структуре будет только в дальнем ИК-диапазоне излучения. Как видно из рис. 3, нелинейная проницаемость очень мала в районе 8.5 THz, поэтому и мощность на разностной частоте в этом диапазоне имеет провал. В области среднего ИК-диапазона, где нелинейная проницаемость имеет максимум, также велико и поглощение излучения разностной моды на фононах, поэтому мощность намного меньше, чем в дальнем ИК-диапазоне. А в более коротковолновой области среднего ИК-диапазона уже не выполняется условие фазового синхронизма при использовании диэлектрического волновода.

Так как постоянная решетки у Si ($a_{\rm Si}=0.5431\,{\rm nm}$) близка по величине к постоянной решетки GaP ($a_{\rm GaP}=0.54506\,{\rm nm}$) [4], то возможен рост GaP на кремниевой подложке [11]. При этом показатель преломления в кремнии для среднего и дальнего ИК-диапазона больше, чем в GaP, поэтому условие фазового синхронизма выполняется и при использовании диэлектрического волновода в среднем ИК-диапазоне. Кроме того, в нелегированном кремнии поглощение излучения в среднем и дальнем ИК-диапазонах мало, поэтому мощности, которые можно получить, значительно больше (рис. 4). Действительно, разностная волна будет распространяться в основном в кремниевой подложке, а взаимодействие высокочастотных мод будет происходить в выращенном на ней волноводе на основе GaP.

Расчет, выполненный с использованием формул (1) и (2) показал, что в планарном волноводе с шириной $100\,\mu\mathrm{m}$ на подложке из Si при мощностях коротковолновых мод $10\,\mathrm{W}$ мощность разностной моды может достигать до $5\,\mathrm{mW}$ в области частот $10{-}14\,\mathrm{THz}$, до $100\,\mu\mathrm{W}$ в области частот $3{-}8\,\mathrm{THz}$ и до $0.5\,\mathrm{mW}$ в области частоты $19\,\mathrm{THz}$ при комнатной температуре.

Работа выполнена в рамках проектов: РФФИ № 04-02-17432, CRDF #RUE1-2657-NN-05, программ президиума РАН "Низкоразмерные квантовые структуры" и "Электромагнитные волны терагерцового диапазона", программы ОФН РАН "Полупроводниковые лазеры", МНТЦ (№ 2293) и Фонда содействия отечественной науке.

Список литературы

- Kohler R., Tredicucci A., Beltram F. et al. // Nature. 2002.
 Vol. 417. P. 156–159.
- [2] Слипченко С.О., Винокуров Д.А., Пихтин Н.А. и др. // ФТП. 2004. Т. 38. Вып. 12. С. 1477–1486.
- [3] Flytzanis C. // Phys. Rev. B. 1972. Vol. 6. N 4. P. 1264–1290.
- [4] Madelung O. Semiconductors: Data Handbook. Springer-Verlag, 2003. 692 p.
- [5] Алешкин В.Я., Афоненко А.А., Звонков Н.Б. // ФТП. 2001.Т. 35. Вып. 10. С. 1256–1260.
- [6] Афоненко А.А., Алешкин В.Я., Дубинов А.А. // ФТП. 2004.Т. 38. Вып. 2. С. 244–248.
- [7] Алешкин В.Я., Афоненко А.А., Дубинов А.А. // ЖТФ. 2004.Т. 74. Вып. 11. С. 92–96.
- [8] Afonenko A.A., Aleshkin V.Ya., Dubinov A.A. // Semicond. Sci. Technol. 2005. Vol. 20. P. 357–362.
- [9] Физические величины: Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.
- [10] Blakemore J.S. // J. Appl. Phys. 1982. Vol. 53. N 10. P. R123– R181.
- [11] Soga T., Suzuki T., Mori M. et al. // J. Crystal Growth. 1993. Vol. 132. P. 414–418.