06

Структура и диэлектрические свойства твердых растворов $\mathsf{Bi}_{6-x}\mathsf{Sr}_x\mathsf{Ti}_{2-x}\mathsf{Nb}_{2+x}\mathsf{O}_{18}\ (x=0{-}2)$

© В.Г. Власенко, С.В. Зубков, В.А. Шуваева

Научно-исследовательский институт физики Южного федерального университета, Ростов-на-Дону, Россия

E-mail: v vlasenko@rambler.ru

(Поступила в Редакцию 4 мая 2012 г.)

Исследованы структурные и электрофизические характеристики ряда твердых растворов слоистых перовскитоподобных оксидов $\mathrm{Bi}_{6-x}\mathrm{Sr}_x\mathrm{Ti}_{2-x}\mathrm{Nb}_{2+x}\mathrm{O}_{18}$ (x=0,0.25,0.5,1.0,1.5,2.0), измерены темературные зависимости относительной диэлектрической проницаемости $\varepsilon/\varepsilon_0(T)$ и тангенса угла диэлектрических потерь $\mathrm{tg}\,\delta$, получены зависимости максимума диэлектрической проницаемости $\varepsilon/\varepsilon_0$, температуры Кюри T_C , параметров ячейки и объема элементарной ячейки от x. Обнаружено заметное отрицательное отклонение от закона Вегарда структурного параметра a, соответствующего полярному направлению, а также величины ромбического искажения элементарной ячейки. Обнаружено, что изменения ромбического искажения коррелируют с изменением величины максимума диэлектрической проницаемости, однако не оказывают заметного влияния на температуру Кюри, которая меняется линейно во всем интервале изменения x.

1. Введение

Фазы Ауривиллиуса (ФА) [1–6] представляют собой большое семейство висмутсодержащих слоистых перовскитоподобных соединений, химический состав которых описывается общей формулой $A_{m-1} \operatorname{Bi}_2 B_m \operatorname{O}_{3m+3}$. Кристаллическая структура ФА представляет собой чередующиеся слои $[\operatorname{Bi}_2)_2]^{2+}$, между которыми находятся m перовскитоподобных слоев $[A_{m-1}B_m\operatorname{O}_{3m+1}]^{2-}$, где позиции A занимают ионы с большими радиусами (Bi^{3+} , Ca^{2+} , Sr^{2+} , Ba^{2+} , Pb^{2+} , Na^+ , K^+ и Ln^{3+} (лантаниды)), позициии B внутри кислородных октаэдров занимают ионы с малыми радиусами (Ti^{4+} , Nb^{5+} , Ta^{5+} , W^{6+} , Mo^{6+} , Fe^{3+} , Mn^{4+} , Cr^{3+} , Ga^{3+}).

Неординарные физические характеристики ФА — существование сегнетоэлектрического состояния до высоких температур ($T_C > 900^{\circ}\mathrm{C}$), пьезосвойства, высокая ионная проводимость и т.д. — позволяют считать эти соединения перспективными для применения в электронных устройствах, работающих в экстремальных условиях. SrBi₂Nb₂O₉, а также твердые растворы на его основе относятся к наиболее изучаемым ФА в связи с перспективами их применения в устройствах памяти NVRAM [7–9]. Одной из приоритетных задач является оптимизация диэлектрических характеристик ФА, в связи с чем важны исследования зависимости этих характеристик от различных факторов. В частности, диэлектрические свойства керамических образцов твердых растворов $(SrBi_2Nb_2O_9)_{1-x}(Bi_3TiNbO_9)_x$, $SrBi_2(Nb_{1-x}Ta_x)_2O_9$ с $0 \le x \le 1$ ранее изучались в зависимости от плотности керамики и размеров зерна, определяемых предысторией используемых прекурсоров и их предварительной механоактивизацией [10,11]. Однако для всех серий образцов ФА, синтезированных в одинаковых условиях, наблюдается довольно сильная нелинейность зависимости величины максимума диэлектрической проницаемости от

концентрации компонентов, несмотря на то что в соответствующих зависимостях температуры Кюри такой нелинейности не обнаружено. Это указывает на наличие других факторов (помимо качества образцов), которые влияют на величину максимума диэлектрической проницаемости.

Для понимания природы такой нелинейности в настоящей работе исследуется взаимосвязь структурных характеристик и электрофизических свойств ряда твердых растворов ФА $\mathrm{Bi}_{6-x}\mathrm{Sr}_x\mathrm{Ti}_{2-x}\mathrm{Nb}_{2+x}\mathrm{O}_{18}$ ($x=0,\ 0.25,\ 0.5,\ 1.0,\ 1.5,\ 2.0$). С этой целью нами измерены температурные зависимости относительной диэлектрической проницаемости $\varepsilon/\varepsilon_0(T)$ и тангенса угла диэлектрических потерь $\mathrm{tg}\,\delta$, получены зависимости максимума диэлектрической проницаемости $\varepsilon/\varepsilon_0$, температуры Кюри T_C , параметров элементарной ячейки a,b,c и ее объема V от концентрации x.

2. Методика эксперимента

Поликристаллические образцы ΦA были синтезированы путем твердофазной реакции соответствующих оксидов Bi_2O_3 , TiO_2 , Nb_2O_5 и карбоната $SrCO_3$. После взвешивания и предварительного измельчения исходных соединений синтез ΦA проводился при температуре $800^{\circ}C$ (2 h), затем проводились повторное измельчение, прессование таблеток диаметром 10 mm и толщиной 1-1.5 mm и окончательный обжиг при температуре $1150^{\circ}C$ (4 h).

Рентгеновские дифрактограммы получены на дифрактометре ДРОН-4 с приставкой для порошковой дифракции ГП-13 и рентгеновской трубкой БСВ21-Си. Си $K\alpha_1$, α_2 -излучение выделялось из общего спектра с помощью Ni-фильтра. Регистрация дифрактограмм осуществлялась в интервале углов 2θ от 5 до 120° с

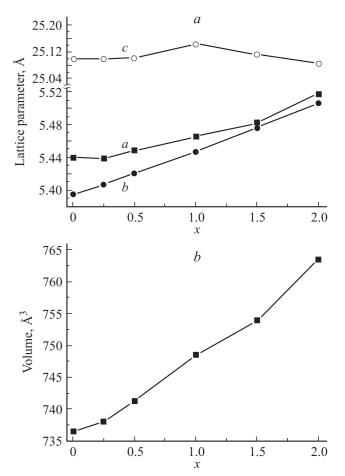
Соединение	$a, \mathrm{\AA}$	$b, \mathrm{\AA}$	c, Å	$V, Å^3$	t	$arepsilon/arepsilon_0$	T_C , °C	$E_a^{(1)}/E_a^{(2)}$, eV
Bi ₆ Ti ₂ Nb ₂ O ₁₈	5.439(8)	5.394(1)	25.09(9)	736.4(9)	0.9474	2128	915	0.8/0.02
$Bi_{5.75}Sr_{0.25}Ti_{1.75}Nb_{2.25}O_{18}$	5.438(4)	5.406(9)	25.09(9)	738.0(4)	0.9483	1235	859	0.8/0.02
$Bi_{5.5}Sr_{0.5}Ti_{1.5}Nb_{2.5}O_{18}$	5.448(0)	5.420(5)	25.10(1)	741.2(6)	0.9492	1101	790	0.9/—
Bi ₅ SrTiNb ₃ O ₁₈	5.465(2)	5.446(9)	25.14(4)	748.5(1)	0.9507	691	690	0.9/0.02
$Bi_{4.5}Sr_{1.5}Ti_{0.5}Nb_{3.5}O_{18}$	5.481(9)	5.476(0)	25.11(2)	753.8(4)	0.9526	658	550	0.8/0.02
Bi ₄ Sr ₂ Nb ₄ O ₁₈	5.518(1)	5.506(3)	25.08(5)	763.5(6)	0.9544	589	459	0.7/0.03

Параметры a, b, c и объем V элементарной ячейки, толеранс-фактор t, относительная диэлектрическая проницаемость $\varepsilon/\varepsilon_0$ на частоте $100\,\mathrm{kHz}$, температура Кюри T_C и энергия активации E_a исследованных образцов

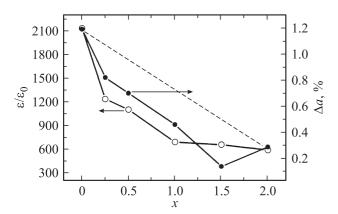
шагом 0.02% и экспозицией $20\,\mathrm{s}$. Анализ профиля дифрактограммы, определение положений линий, их индицирование (hkl) и уточнение параметров элементарной ячейки были проведены при помощи программы PCW-2.4 [12].

Для проведения электрических измерений образцы ΦA прессовались в виде дисков диаметром $10\,\mathrm{mm}$ и толщиной $\sim 1\,\mathrm{mm}$, затем на плоские поверхности наносились Ag-Pt-электроды. Измерения проводились с помощью измерителя иммитанса E7-20 в частотном интервале $1\,\mathrm{kHz}-1\,\mathrm{MHz}$ в области температур от комнатной до $900^\circ\mathrm{C}$.

3. Обсуждение результатов


Порошковые дифрактограммы всех исследованных твердых растворов $\mathrm{Bi}_{6-x}\mathrm{Sr}_x\mathrm{Ti}_{2-x}\mathrm{Nb}_{2+x}\mathrm{O}_{18}$ (x=0-2.0) соответствовали монофазным $\Phi\mathrm{A}$ с m=2 орторомбической сингонии с пространственной группой $A2_1am$ (36) и не содержали дополнительных максимумов. Параметры ячейки, уточненные на основе рентгенодифракционных данных, и рассчитанные на их основе объемы и параметры ромбической и тетрагональной деформаций, а также толеранс-факторы t приведены в таблице. Толеранс-фактор был введен Гольдшмидтом [13] как параметр, определяющий геометрический вариант ионной упаковки в кубических ячейках и характеризующий устойчивость кубической структуры:

$$t = \frac{R_A + R_O}{\sqrt{2}(R_B + R_O)},$$

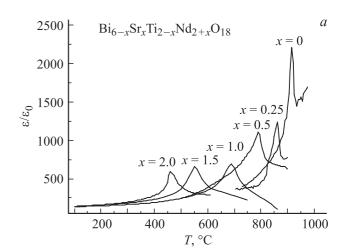

гда R_A и R_B — радиусы катионов в позициях A и B соответственно, $R_{\rm O}$ — радиус иона кислорода. При расчете толеранс-фактора t в настоящей работе были взяты значения ионных радиусов по Шеннону [14] для ${\rm O^{2-}}$ (КЧ=6) $R_{\rm O}=1.40$ Å, для ${\rm Sr^{2+}}$ (КЧ=12) $R_{\rm Sr}=1.44$ Å, для ${\rm Nb^{5+}}$ (КЧ=6) $R_{\rm Nb}=0.64$ Å, для ${\rm Ti^{4+}}$ (КЧ=6) $R_{\rm Ti}=0.605$ Å (КЧ — координационное число). Ионный радиус ${\rm Bi^{3+}}$ для координации с КЧ=12 у Шеннона [14] не приводится, и его значение определяют по радиусу иона с КЧ=8, умножая на аппроксимирующий коэффициент 1.12, тогда для ${\rm Bi^{3+}}$ (КЧ=12) $R_{\rm Bi}=1.31$ Å. Область наибольшей устойчивости кубических структур

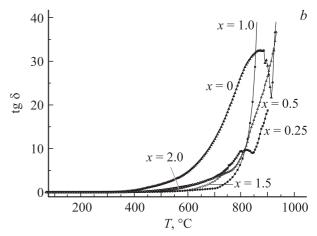
соответствует интервалу $0.9 \le t \le 1.0$, куда входят все полученные значения толеранс-факторов t для синтезированных ΦA .

На рис. 1 приведена зависимость параметров и объема ячейки от x. Как видно из рис. 1, величина изменения объема элементарной ячейки в указанном ряду составляет более чем 3%. Это связано с различием значений радиусов ионов как в позициях A перовскитоподобных слоев при замене ионов Bi^{3+} на ионы большего радиуса Sr^{2+} , так и в позициях B, где ионы Ti^{4+} замещаются

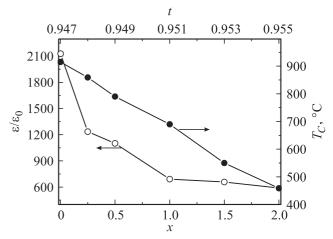
Рис. 1. Изменение параметров a, b, c (a) и объема V (b) элементарной ячейки от x ряда синтезированных соединений $\mathrm{Bi}_{6-x}\mathrm{Sr}_x\mathrm{Ti}_{2-x}\mathrm{Nb}_{2+x}\mathrm{O}_{18}$ (x=0-2.0).

Рис. 2. Зависимость величины ромбического искажения Δa и максимума относительной диэлектрической проницаемости $\varepsilon/\varepsilon_0(T)$ от x.


более крупными Nb^{5+} ($R_{\mathrm{Ti}}^{4+}=0.605\,\mathrm{\AA}$, $R_{\mathrm{Nb}}^{5+}=0.64\,\mathrm{Å}$). Следует заметить, что весь рост объема ячейки происходит исключительно за счет увеличения параметров a и b, в то время как параметр c остается практически постоянным и его вариации не превышают несколько десятых процента.


Параметр a, соответствующий полярному направлению, обнаруживает заметное отрицательное отклонение от линейной зависимости, тогда как изменение параметров b, c и объема V происходит в более близком соответствии с законом Вегарда. Такие эффекты могут быть связаны в том числе и с частичным упорядочением атомов в перовскитовой подрешетке вследствие значительных различий радиусов атомов, занимающих одинаковые позициии в перовскитовом слое.

Нелинейную зависимость от x демонстрирует также величина ромбического искажения Δa , рассчитанная на основе экспериментальных параметров решетки и показанная на рис. 2. Как видно из рис. 2, даже при небольших значениях параметра x наблюдается существенное уменьшение ромбического искажения ячейки Δa по сравнению с недопированным $\mathrm{Bi}_3\mathrm{TiNbO}_9$.


Наряду со структурными исследованиями проведены также измерения относительной диэлектрической проницаемости $\varepsilon/\varepsilon_0$, тангенса угла диэлектрических потерь tg δ (рис. 3, a,b), удельной проводимости σ для Φ А при различных частотах 50-1000 kHz, а также найдены энергии активации E_a носителей тока в различных температурных интервалах. По положению максимумов диэлектрической проницаемости были определены температуры Кюри T_C для всех исследованных образцов, которые показаны на рис. 4 как функция х и t. Как видно из рис. 4, зависимость T_C от x, t практически линейна, что согласуется с результатами предыдущих исследований [10,15,16] и является еще одним доказательством монофазности твердых растворов. Однако величина максимума диэлектрической проницаемости сильно нелинейна по х. Следует отметить, что в более ранних диэлектрических исследованиях этой системы

твердых растворов [10] нелинейность данной зависимости имела еще более выраженный характер. На рис. 2 зависимость величны максимума $\varepsilon/\varepsilon_0$ от x представле-

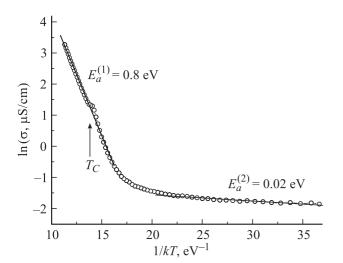


Рис. 3. Температурные зависимости относительной диэлектрической проницаемости $\varepsilon/\varepsilon_0(T)$ (a) и тангенса угла потерь tg δ (b) для $\mathrm{Bi}_{6-x}\mathrm{Sr}_x\mathrm{Ti}_{2-x}\mathrm{Nb}_{2+x}\mathrm{O}_{18}$ (x=0-2.0) при $100\,\mathrm{kHz}$.

Рис. 4. Зависимости максимума $\varepsilon/\varepsilon_0$ (при $100\,\mathrm{kHz}$) и температуры Кюри T_C от x и толеранс-фактора t для ряда синтезированных соединений $\mathrm{Bi}_{6-x}\mathrm{Sr}_x\mathrm{Ti}_{2-x}\mathrm{Nb}_{2+x}\mathrm{O}_{18}$ (x=0-2.0).

Рис. 5. Зависимость $\ln \sigma$ от 1/kT для ΦA Ві_{5.75} $Sr_{0.25}Ti_{1.75}Nb_{2.25}O_{18}.$

на вместе с соответствующей зависимостью величины ромбического искажения. Как видно из рис. 2, наблюдается довольно точное соответствие поведения этих двух характеристик для исследуемого ряда твердых растворов. Таким образом, можно заключить, что в данном ряду соединений структурные изменения, приводящие к нелинейному уменьшению ромбического искажения с изменением состава, оказывают существенное влияние на величину максимума диэлектрической проницаемости, однако практически не сказываются на температуре Кюри, которая изменяется линейно во всем диапазоне концентраций.

Температурные зависимости tg δ (рис. 3, b) для исследованных Φ A обнаруживают резкий рост диэлектрических потерь при высоких температурах (> 600° C). Это обусловлено большим количеством носителей заряда, концентрация которых резко возрастает при высоких температурах за счет образования кислородных вакансий. Однако при рассмотрении величины tg δ для различных Φ A при фиксированной температуре, например T_C , обнаружено, что они различаются в несколько раз, что указывает на существенно различную степень дефектности кристаллической структуры Φ A.

На основе зависимости $\ln \sigma$ от 1/kT получены значения энергии активации носителей заряда E_a для всего ряда Φ A (см. таблицу). Типичная зависимость $\ln \sigma = f(1/kT)$ показана для $\text{Bi}_{5.75}\text{Sr}_{0.25}\text{Ti}_{1.75}\text{Nb}_{2.25}\text{O}_{18}$ на рис. 5, откуда хорошо видно, что существуют две температурные области с $E_a^{(1)}$ и $E_a^{(2)}$, в которых энергии активации имеют существенно различные значения. Это обусловлено тем, что в высокотемпературной области основными носителями заряда в Φ A являются собственные дефекты, образование которых требует больших значений активационной энергии $E_a^{(1)}$. В области низких температур проводимость определяется в основном примесными дефектами, имеющими существенно меньшие значения энергии активации $E_a^{(2)}$. Необходимо отметить,

что значения энергий активации в обеих областях близки для всех членов ряда $\mathrm{Bi}_{6-x}\mathrm{Sr}_x\mathrm{Ti}_{2-x}\mathrm{Nb}_{2+x}\mathrm{O}_{18},$ что свидетельствует о неизменности характера проводимости.

4. Заключение

Проведенные структурные и диэлектрические исследования серии слоистых перовскитоподобных оксидов $\mathrm{Bi}_{6-x}\mathrm{Sr}_x\mathrm{Ti}_{2-x}\mathrm{Nb}_{2+x}\mathrm{O}_{18}$ (x=0-2.0) со структурой фаз Ауривиллиуса показали, что параметр ячейки a, соответствующий полярному направлению, обнаруживает заметное отрицательное отклонение от закона Вегарда. Зависимость величины ромбического искажения от x также нелинейна и коррелирует с соответствующей зависимостью величины максимума диэлектрической проницаемости. Однако эта нелинейность структурных параметров не сказывается на температуре Кюри, которая изменяется линейно во всем диапазоне концентраций.

Список литературы

- [1] B. Aurivillius. Arkiv Kemi 1, 463 (1949).
- [2] B. Aurivillius. Arkiv Kemi 1, 499 (1949).
- [3] B. Aurivillius. Arkiv Kemi 2, 512 (1950).
- [4] В.А. Исупов. ЖНХ 39, 731 (1994).
- [5] V.G. Vlasenko, A.T. Shuvaev, D.S. Drannikov. Powder Diffraction. 20, 1 (2005).
- [6] А.Т. Шуваев, В.Г. Власенко, Д.С. Дранников, И.А. Зарубин. Неорган. материалы **41**, 1085 (2005).
- [7] C.A.P. DeAraujo, J.D. Cuchiaro, L.D. Mcmillan, M.C. Scott, J.F. Scott. Nature **374**, 627 (1995).
- [8] S.B. Majumder, P.S. Dobal, S. Bhaskar, R.S. Katiyar. Ferroelectrics **241**, 287 (2000).
- [9] Y. Cheol-Hoon, K. Jae-Sun, Y. Soon-Gil. Integrated Ferroelectrics 21, 475 (1998).
- [10] B. Jiménez, L. Pardo, A. Castro, P. Millán, R. Jiménez, M. Elaatmani, M. Oualla. Ferroelectrics 241, 279 (2000).
- [11] D. Kajewski, Z. Ujma, K. Szot, M. Paweczyk. Ceram. Int. 35, 2351 (2009).
- [12] W. Kraus, G. Nolze. PowderCell for Windows. Version 2.3. Federal Institute for Materials Research and Testing, Berlin, Germany (1999).
- [13] V.M. Goldschmidt. Geochemisca veterlun. Norske Videnkap, Oslo (1927).
- [14] R.D. Shannon. Acta Cryst. A. 32, 75 (1976).
- [15] T. Sivakumar, M. Itoh. J. Mater. Chem. 21, 10865 (2011).
- [16] D.Y. Suarez, I.M. Reaney, W.E. Lee. J. Mater. Res. 16, 3139 (2001).