от Возбуждение волноводного трансформатора

© М.В. Давидович

Саратовский государственный университет, 410012 Саратов, Россия e-mail: DavidovichMV@info.sgu.ru

(Поступило в Редакцию 21 марта 2006 г.)

В общей постановке получены иммитансные интегральные уравнения стационарного возбуждения экранированного волноводного трансформатора с любым числом произвольно расположенных присоединенных полубесконечных волноводов. Возбуждение может осуществляться как произвольными источниками внутри (сторонними электрическими и магнитными токами), так и падающими из бесконечности нормальными волнами. Результаты распространены на случай неидеальных стенок для магнитодиэлектрических и металлических включений. Полученные результаты являются обобщением известных импедансных и адмитансных уравнений для волноводов с неоднородностями.

PACS: 11.10.-z, 41.20.-c, 07.57.-c

Введение

При рассмотрении краевых задач электродинамики часто возникает задача о возбуждении волноводного трансформатора (BT). Под ВТ понимается некий экранированный резонатор объемом V0, ограниченный поверхностью S₀ и соединенный с несколькими полубесконечными экранированными волноводами [1,2]. Можно рассматривать и открытые BT (и соответственно открытые резонаторы и волноводы), однако рассмотрение их возбуждения требует несколько других подходов [3-5]. ВТ представляет собой наиболее общую структуру для внутренних краевых задач электродинамики. Большое число работ было посвящено решению задач и обоснованию этих решений для частного случая ВТ из двух полубесконечных волноводов, соединенных произвольным неоднородным отрезком волновода [6-9]. Обычно в рассмотренных случаях возбуждение осуществлялось падающей модой одного из волноводов. Нестационарное возбуждение экранированных и открытых ВТ было рассмотрено в [3-5]. Цель настоящей работы — получение стационарных формул возбуждения экранированного ВТ.

Предположим, что внешнаяя часть S поверхности резонатора, не граничащая с волноводами, имеет произвольную форму и составлена из кусочно-гладких поверхностей (можно ограничиться поверхностями Ляпунова). Стенки ВТ сначала будем считать идеальными, т.е. состоящими из идеальных электрических и/или магнитных поверхностей. Это значит, что поток энергии через них (или нормальная компонента вектора Пойтинга на них) отсутствует. В случае, например, ВТ с импедансными условиями Леонтовича на глубине нескольких скинслоев в его металлических стенках можно провести оболочку, которую считать идеально проводящей, а образовавшийся слой трактовать как диэлектрик с большими потерями, включений в BT [10]. Пусть BT возбуждается стационарными источниками с зависимостью от времени $\exp(j\omega t)$. Эти источники расположены либо внутри резонатора, либо на бесконечности в одном или нескольких волноводах. Если источники расположены в каком-либо волноводе на конечном расстоянии, то перенесем референсную плоскость так, чтобы включить их в рассматриваемый резонатор. Источником внутри резонатора являются распределенные в объеме $V \subset V_0$ внутри резонатора сторонние электрические и магнитные токи с плотностями $\mathbf{J}_{in}^{(e,m)}$.

Сторонние источники на бесконечности возбуждают в соответствующих волноводах приходящие к резонатору (падающие) нормальные волны с фиксированными амплитудами. Пронумеруем волноводы от 1 до K и будем считать, что имеется только одна падающая нормальная мода номера i в первом волноводе с единичной амплитудой. После получения формулировки указанной задачи общая формулировка следует из принципа суперпозиции. Пересечение референсных плоскостей с волноводами образуют поперечные сечения S_k , k = 1, ..., K. Указанные поперечные сечения в частном случае могут совпадать с апертурами S_{Ak} . В общем случае на них могут находиться бесконечно тонкие металлические поверхности S_{Mk} , и тогда $S_{Ak} = S_k/S_{Mk}$, k = 1, ..., K.

В каждом волноводе введем локальную систему координат $\mathbf{r}_{k\perp}, z_k$, где продольная вдоль оси волновода координата z_k отсчитывается от S_k к бесконечности (во внешнюю от резонатора область). На поверхностях S_{Mk} в общем случае будем предполагать заданным импедансное условие $\boldsymbol{\nu}(\mathbf{r}_{k\perp}) imes \mathbf{E}(\mathbf{r}_{k\perp}, \mathbf{0}) = \rho(\mathbf{r}_{k\perp}) \mathbf{J}_S(\mathbf{r}_{k\perp})$, где $\boldsymbol{\nu}$ внешняя (к резонатору) нормаль. Эта нормаль на поверхностях сечений не зависит от поперечных координат и совпадает с орт-вектором локальной системы координат соответствующего волновода \mathbf{z}_{k0} . Таким образом, поверхность резонатора S₀ состоит из кусочно-гладкой поверхности S и плоских поверхностей S_k. В свою очередь, поверхность S можно разбить на две части: S_E и S_M соответственно, на которых выполняются условия в виде идеальных электрических и магнитных стенок. Полная поверхность ВТ бесконечна и состоит из S и боковых поверхностей волноводов. Вывод уравнений начнем со случая полного резонатора. В зависимости от способа построения решения можно рассматривать адмитансный и импедансный алгоритмы.

1. Адмитансный алгоритм

Рассмотрим эквивалентный резонатор с идеальной поверхностью *S* и идеально проводящими поверхностями S_k . Тогда поля в резонаторе, обусловленные сторонними токами, определяются из теории возбуждения Л.А. Вайнштейна в виде уравнений (89.01), (89.04) и (89.15) [10]. В отличие от [10] мы будем рассматривать уравнения Максвелла в системе СИ, при этом зависимость от времени возьмем в виде $\exp(j\omega t)$. При этом предполагается, что известны собственный спектр резонатора и его собственные моды

$$\nabla \times \mathbf{H}_{n}(\mathbf{r}, \omega_{n}) = j\omega_{n}\varepsilon_{0}\mathbf{E}_{n}(\mathbf{r}, \omega_{n}),$$
$$-\nabla \times \mathbf{E}_{n}(\mathbf{r}, \omega_{n}) = j\omega_{n}\mu_{0}\mathbf{H}_{n}(\mathbf{r}, \omega_{n}), \qquad (1)$$

которые ортогональны

$$\varepsilon_{0} \int_{V_{0}} \mathbf{E}_{n}(\mathbf{r}, \omega_{n}) \mathbf{E}_{l}^{*}(\mathbf{r}, \omega_{n}) dV$$
$$= \mu_{0} \int_{V_{0}} \mathbf{H}_{n}(\mathbf{r}, \omega_{n}) \mathbf{H}_{l}^{*}(\mathbf{r}, \omega_{n}) dV = \delta_{nl} N_{n}, \qquad (2)$$

$$\varepsilon_{0} \int_{V_{0}} \mathbf{E}_{n}(\mathbf{r}, \omega_{n}) \mathbf{E}_{l}(\mathbf{r}, \omega_{n}) dV$$
$$= -\mu_{0} \int_{V_{0}} \mathbf{H}_{n}(\mathbf{r}, \omega_{n}) H_{l}(\mathbf{r}, \omega_{n}) dV = \delta_{nl} \tilde{N}_{n}. \quad (3)$$

Норма N_n в (2) действительная, тогда как в (3) — комплексная. Поля в резонаторе представим в виде

$$\mathbf{E}(\mathbf{r},\omega) = \sum_{n=1}^{\infty} A_n \mathbf{E}_n(\mathbf{r},\omega_n) - \nabla \Phi^e(\mathbf{r},\omega),$$
$$H(\mathbf{r},\omega) = \sum_{n=1}^{\infty} B_n \mathbf{H}_n(\mathbf{r},\omega_n) - \nabla \Phi^m(\mathbf{r},\omega), \qquad (4)$$

при этом скалярные потенциалы удовлетворяют уравнению Пуассона

$$-\nabla^{2}\Phi^{e}(\mathbf{r},\omega) = \frac{\rho_{in}^{e}(\mathbf{r},\omega)}{\varepsilon_{0}} = j \frac{\nabla \mathbf{J}_{in}^{e}(\mathbf{r},\omega)}{\omega\varepsilon_{0}},$$
$$-\nabla^{2}\Phi^{m}(\mathbf{r},\omega) = \frac{\rho_{in}^{m}(\mathbf{r},\omega)}{\mu_{0}} = j \frac{\nabla \mathbf{J}_{in}^{m}(\mathbf{r},\omega)}{\omega\mu_{0}}.$$
 (5)

Заметим, что кроме соотношений (4) в кулоновской калибровке можно написать эквивалентные им релятивистски инвариантные представления полей в калибровке Лоренца, при этом скалярные потенциалы будут удовлетворять неоднородному уравнению Гельмгольца (волновому уравнению). Кроме того, указанные представления (1)–(5) могут соответствовать различным постановкам задачи: с идеальными электрическими стенками не всей поверхности резонатора (S и всех S_k), с идеальными магнитными стенками на всей поверхности резонатора, а также со смешанными условиями идеальных электрических стенок на части поверхности S (на поверхности S_E) и некоторых поверхностях S_k , и условиями магнитных стенок на остальной ее части S_M и оставшихся сечениях S_k . В последнем случае либо S_E , либо S_M также могут совпадать со всей S. В скалярном случае указанным постановкам соответствуют задачи с одномерными условиями Дирихле, Неймана и со смешанными условиями. В общем виде решение задачи о возбуждении резонатора введенными сторонними токами определяется четырьмя тензорными функциями Грина (ФГ) в виде [11–14]:

$$\mathbf{E}(\mathbf{r},\omega) = \int_{V} \{\Gamma^{ee}(\mathbf{r},\mathbf{r}')\mathbf{J}^{e}_{in}(\mathbf{r}',\omega) + \Gamma^{em}(\mathbf{r},\mathbf{r}')\mathbf{J}^{m}_{in}(\mathbf{r}',\omega)\}dV', \qquad (6)$$
$$\mathbf{H}(\mathbf{r},\omega) = \int \{\Gamma^{me}(\mathbf{r},\mathbf{r}')\mathbf{J}^{e}(\mathbf{r}',\omega)\}dV', \qquad (6)$$

$$\mathbf{H}(\mathbf{r},\omega) = \int_{V} \left\{ \Gamma^{me}(\mathbf{r},\mathbf{r}') \mathbf{J}^{e}_{in}(\mathbf{r}',\omega) + \Gamma^{mm}(\mathbf{r},\mathbf{r}') \mathbf{J}^{m}_{in}(\mathbf{r}',\omega) \right\} dV',$$
(7)

где интегрирование производится по объему V, занятому источниками.

Получить явный вид ФГ можно, используя представления полей (4) и пользуясь формулами Вайнштейна для коэффициентов разложения. Вид этих формул зависит от выбора нормировки (2) или (3) (от определения скалярного произведения в пространстве функций). Мы в отличие от [10] будем пользоваться соотношением (2). Использование нормировки (3) приводит к эквивалентным, но другим представлениями интегральных уравнений (ИУ). Однако для получения ИУ необходимо также найти общие решения уравнений Пуассона (5). Этим уравнениям соответствуют бесконечнократно вырожденные (с собственным значением $\omega_0 = 0$) собственные потенциальные функции $\mathbf{E}_0 = -\nabla \Phi^e$, $\mathbf{H}_0 = -\nabla \Phi^m$, связанные со статическими полями. Для нахождения этих полей введем, как и в [15], полные ортонормированные в объеме V собственные функции оператора $-\nabla^2$:

$$-\nabla^{2}\varphi_{n}^{(e,m)}(\mathbf{r}) = \lambda_{n}^{(e,m)}\varphi_{n}^{(e,m)}(\mathbf{r}),$$
$$0 \leq \lambda_{1}^{(e,m)} < \dots < \lambda_{n-1}^{(e,m)} < \lambda_{n}^{(e,m)} < \dots$$
(8)

Соответственно в (8) необходимо накладывать условия Дирихле, Неймана или смешанные условия в зависимости от типа поверхности и граничных условий на ней для нормальных и касательных компонент полей. Так, для идеальной электрической стенки $\Phi^e = 0$ и $\partial \Phi^m / \partial \nu = 0$, а для идеальной магнитной стенки — $\Phi^m = 0$ и $\partial \Phi^e / \partial \nu = 0$.

Поскольку оператор $-\nabla^2$ положительно определенный и эрмитовый (краевая задача (8) — самосопряженная), построение указанных функций и их ортогонализация возможны с использованием процедуры минимизации квадратичного положительно определенного функционала [1,16]. Разлагая потенциалы по функциям (8) и пользуясь условиями ортонормированности, найдем

$$\Phi^{e}(\mathbf{r},\omega) = \frac{j}{\omega\varepsilon_{0}} \int_{V} \left(\sum_{n=1}^{\infty} \frac{\varphi_{n}^{e}(\mathbf{r})\varphi_{n}^{e^{*}}(\mathbf{r}')}{\lambda_{n}^{e}} \right) \nabla \mathbf{J}_{in}^{e}(\mathbf{r}',\omega) dV'.$$
(9)

Вид магнитного скалярного потенциала отличается от (9) заменой ε_0 на μ_0 и индексов *e* на *m*, поэтому тензорные $\Phi\Gamma$ можно представить в виде

$$\Gamma^{ee}(\mathbf{r},\mathbf{r}') = j\omega \sum_{n=1}^{\infty} \frac{\mathbf{E}_n \mathbf{r} \otimes \mathbf{E}_n^*(\mathbf{r}')}{(\omega^2 - \omega_n^2)N_n} - \frac{j}{\omega\varepsilon_0} \sum_{n=1}^{\infty} \frac{\varphi_n^e(\mathbf{r})\varphi_n^{e^*}(\mathbf{r}')\nabla\otimes\nabla'}{\lambda_n^e}, \qquad (10)$$

$$\Gamma^{em}(\mathbf{r},\mathbf{r}') = j \sum_{n=1}^{\infty} \omega_n \, \frac{\mathbf{E}_n \mathbf{r} \otimes \mathbf{H}_n^*(\mathbf{r}')}{(\omega^2 - \omega_n^2)N_n},$$

$$\Gamma^{me}(\mathbf{r},\mathbf{r}') = j \sum_{n=1}^{\infty} \omega_n \, \frac{\mathbf{H}_n \mathbf{r} \otimes \mathbf{E}_n^*(\mathbf{r}')}{(\omega^2 - \omega_n^2)N_n}, \tag{11}$$

$$\Gamma^{mm}(\mathbf{r},\mathbf{r}') = j\omega \sum_{n=1}^{\infty} \frac{\mathbf{H}_n \mathbf{r} \otimes \mathbf{H}_n^*(\mathbf{r}')}{(\omega^2 - \omega_n^2)N_n} - \frac{j}{\omega\mu_0} \sum_{n=1}^{\infty} \frac{\varphi_n^m(\mathbf{r})\varphi_n^m(\mathbf{r}')\nabla \otimes \nabla'}{\lambda_n^m}.$$
 (12)

Пусть внутри резонатора имеется распределение поверхностного стороннего магнитного тока. При этом ему будет соответствовать поверхностный интеграл в (2), (3), а объемную плотность, соответствующую поверхностному току \mathbf{J}_S , можно записать с помощью \mathbf{J}_S и дельта-функции от поперечной к поверхности координаты. В частном случае указанный поверхностный ток можно поместить и на поверхность резонатора. В качестве такого тока, в частности, выступает касательное электрическое поле на апертуре. Указанный прием широко используется при анализе возбуждения волноводов и резонаторов с помощью щелей [1,2,17]. Таким образом, в силу принципа суперпозиции, полное поле в резонаторе представимо как

$$\mathbf{E}(\mathbf{r},\omega) = \int_{V} \left\{ \Gamma^{ee}(\mathbf{r},\mathbf{r}') \mathbf{J}^{e}_{in}(\mathbf{r}',\omega) + \Gamma^{em}(\mathbf{r},\mathbf{r}') \mathbf{J}^{m}_{in}(\mathbf{r}',\omega) \right\} dV' + \sum_{k=1}^{K} \int_{S_{Ak}} \Gamma^{em}(\mathbf{r},\mathbf{r}'_{k\perp}) \mathbf{z}_{k0} \times \mathbf{E}(\mathbf{r}'_{k\perp},0) dS', \quad (13)$$

$$\mathbf{H}(\mathbf{r},\omega) = \int_{V} \left\{ \Gamma^{me}(\mathbf{r},\mathbf{r}') \mathbf{J}_{in}^{e}(\mathbf{r}',\omega) + \Gamma^{mm}(\mathbf{r},\mathbf{r}') \mathbf{J}_{in}^{m}(\mathbf{r}',\omega) \right\} dV' + \sum_{k=1}^{K} \int_{S_{Ak}} \Gamma^{mm}(\mathbf{r},\mathbf{r}'_{k\perp}) \mathbf{z}_{k0} \times \mathbf{E}(\mathbf{r}'_{k\perp},0) dS'.$$
(14)

Соотношения (13), (14) записаны для случая идеально проводящих двусторонних металлических поверхностей S_{Mk} . Если их проводимость $\sigma = \rho^{-1}$ не бесконечная, то на них существует касательное электрическое поле, поэтому интегрировать в (13), (14) необходимо по полным поперечным сечениям S_k .

Поля в волноводах представим в виде разложения по нормальным волнам. Пусть $\mathbf{e}_{kn}(\mathbf{r}_{k\perp})$ — полная на поперечных сечениях система поперечных электрических функций таких волн в канале k. Мы не делаем явных различий в записи между электрическими и магнитными типами волн, считая, что все они нумеруются единым образом индексом n (в том числе и возможные T-волны). Будем предполагать выполненными следующие соотношения ортогональности:

$$\int_{S_k} \mathbf{e}_{kn}(\mathbf{r}_{k\perp}) \mathbf{e}_{kl}^*(\mathbf{r}_{k\perp}) dS = \delta_{nl}.$$
 (15)

Поскольку магнитные поверхностные функции связаны с электрическими соотношением $\mathbf{h}_{kn}(\mathbf{r}_{k\perp}) = \mathbf{z}_{k0} \times \mathbf{e}_{kn}(\mathbf{r}_{k\perp})/Z_{kn}$, где Z_{kn} — волновые импедансы в канале с номером k, эти соотношения ортогональности можно представить в форме

$$\int_{S_k} \mathbf{e}_{kn}(\mathbf{r}_{k\perp}) \times \mathbf{h}_{kl}^*(\mathbf{r}_{k\perp}) dS = \mathbf{z}_{k0} \delta_{nl} / Z_{kn}^*, \qquad (16)$$

из которой следует ортогональность взаимных потоков через поперечное сечение векторов Пойтинга для нормальных мод. Поперечные поля в полубесконечных волноводах представим в виде (k = 1, 2, ..., K)

$$\mathbf{E}_{k\perp}(\mathbf{r}_{k\perp},\mathbf{z}_{k}) = \sum_{n=1}^{\infty} (\delta_{1k} \delta_{in} e^{j\gamma_{kn} z_{k}} + a_{kn} e^{-j\gamma_{kn} z_{k}}) \mathbf{e}_{kn}(\mathbf{r}_{k\perp}),$$
(17)

$$\mathbf{H}_{k\perp}(\mathbf{r}_{k\perp},\mathbf{z}_k) = \sum_{n=1}^{\infty} (-\delta_{1k}\delta_{in}e^{j\gamma_{kn}z_k} + a_{kn}e^{-j\gamma_{kn}z_k})\mathbf{h}_{kn}(\mathbf{r}_{k\perp}),$$
(18)

и введем функции

$$\mathbf{J}_{k\perp}(\mathbf{r}_{k\perp}, z_k) = \mathbf{z}_{k0} \times \mathbf{H}_{k\perp}(\mathbf{r}_{k\perp}, z_k)$$
$$= \sum_{n=1}^{\infty} (\delta_{1k} \delta_{in} e^{j\gamma_{kn} z_k} - a_{kn} e^{-j\gamma_{kn} z_k}) \frac{\mathbf{e}_{kn}(\mathbf{r}_{k\perp})}{Z_{kn}}, \qquad (19)$$

которые представляют собой односторонние поверхностные токи на любом плоском металлическом препятствии в волноводе, соответствующие магнитным полям (18). Заметим, что вектор (18) аксиальный, тогда как (19) — полярный. Далее вводим на апертурах, как обычно, неизвестные распределения касательного электрического поля $\mathbf{E}_{k\perp}(\mathbf{r}_{k\perp}, 0) \equiv \mathbf{E}_{k\perp}(\mathbf{r}_{k\perp})$ и производим сшивание полей. Вместо сшивания магнитных полей (18) удобнее сшить функции (19). Тогда получаем адмитансные ИУ:

$$\sum_{l=1}^{K} \int_{S_{Al}} \widecheck{K}_{kl}(\mathbf{r}_{k\perp}, \mathbf{r}_{l\perp}') \mathbf{E}_{l\perp}(\mathbf{r}_{l\perp}') dS' = 2\delta_{1k} \frac{\mathbf{e}_{ki}(\mathbf{r}_{k\perp})}{Z_{ki}}$$
$$- \mathbf{z}_{k0} \times \int_{V} \left\{ \Gamma^{me}(\mathbf{r}_{k\tau}, \mathbf{r}') \mathbf{J}_{in}^{e}(\mathbf{r}', \omega) + \Gamma^{mm}(\mathbf{r}_{k\tau}, \mathbf{r}') \mathbf{J}_{in}^{m}(\mathbf{r}', \omega) \right\} dV'$$
(20)

с ядрами

$$\widetilde{K}_{kl}(\mathbf{r}_{k\perp},\mathbf{r}'_{l\perp}) = \delta_{kl} \sum_{n=1}^{\infty} \frac{\mathbf{e}_{kn}(\mathbf{r}_{k\perp}) \otimes \mathbf{e}_{kn}^{*}(\mathbf{r}'_{k\perp})}{Z_{kn}} + \mathbf{z}_{k0} \times \Gamma^{mm}(\mathbf{r}_{k\tau},\mathbf{r}'_{l\tau})\mathbf{z}_{l0}.$$
 (21)

В этих связанных уравнениях (k = 1, 2, ..., K) первый член в ядре интегрального оператора (11) действует на функцию справа как скалярное умножение (\otimes оператор диадного произведения), а второй член как векторное умножение. Кроме того, точки истока и наблюдения в ФГ взяты на поверхностях S_k , что обозначено индексом τ , при этом ядро (21) можно трактовать как функцию поверхностных радиус-векторов. Соотношения (20), (21) записаны для идеально проводящих двусторонних металлических поверхностей S_{Mk} , при этом ИУ (20) выполняются на апертурах. В случае неидеальных металлизаций интегрирования должны осуществляться по поверхностям поперечных сечений S_k . При этом ИУ выполняются на этих поверхностях и модифицируются следующим образом:

$$\sum_{l=1}^{K} \int_{S_{l}} \breve{K}_{kl}(\mathbf{r}, \mathbf{r}_{l\perp}') \mathbf{E}_{l\perp}(\mathbf{r}_{l\perp}') dS'$$

$$= \sigma(\mathbf{r}_{k\perp}) \mathbf{E}_{k\perp}(\mathbf{r}_{k\perp}) + 2\delta_{1k} \frac{\mathbf{e}_{ki}(\mathbf{r}_{k\perp})}{Z_{ki}}$$

$$- \mathbf{z}_{k0} \times \int_{V} \left\{ \Gamma^{me}(\mathbf{r}_{k\tau}, \mathbf{r}') \mathbf{J}_{in}^{e}(\mathbf{r}', \omega) + \Gamma^{mm}(\mathbf{r}_{k\tau}, \mathbf{r}') \mathbf{J}_{in}^{m}(\mathbf{r}', \omega) \right\} dV'. \qquad (22)$$

Здесь на поверхностях S_{Mk} введены проводимости $\sigma(\mathbf{r}_{k\perp}) = \rho^{-1}(\mathbf{r}_{k\perp})$, обращающиеся на апертурах в нуль. Еще раз напомним, что уравнения приведены для случая, когда падающая волна имеется лишь в первом канале и номер этой моды *i*.

2. Импедансный алгоритм

Рассмотрим теперь резонатор с идеальными магнитными стенками на всех поверхностях S_k . На части S_E поверхности S также должно быть наложено условие электрической стенки. Соответственно поля (1) и все соотношения (2)–(12) определены для этих условий. При этом поверхностные электрические токи, которые должны течь по поверхности S_E, будем рассматривать как поверхностные источники внутри резонатора, устремленные на его поверхность. Тензорные ФГ с указанными граничными условиями будем в отличие от ФГ с электрическими стенками на S_k обозначать знаком \sim сверху. Импедансные ИУ получаются, когда неизвестные коэффициенты разложений в (17), (18) выражаются через неизвестные двусторонние поверхностные токи $\mathbf{J}_{k\perp}(\mathbf{r}_{k\perp})$ на поверхностях S_{Mk} и односторонние токи $\mathbf{J}_{S}(\mathbf{r}_{\tau})$ на S_{E} , а затем сшиваются электрические поля. Поля внутри ВТ возбуждаются заданными объемными сторонними токами и односторонними поверхностными токами $\mathbf{J}_{k\perp}^{-}(\mathbf{r}_{k\perp})$ и $\mathbf{J}_{S}(\mathbf{r}_{\tau})$ на электрически проводящих поверхностях S_{mk} и S_E , поэтому вместо (13) и (14) следует записать

$$\mathbf{E}(\mathbf{r},\omega) = \int_{V} \left\{ \tilde{\Gamma}^{ee}(\mathbf{r},\mathbf{r}') \mathbf{J}^{e}_{in}(\mathbf{r}',\omega) + \tilde{\Gamma}^{em}(\mathbf{r},\mathbf{r}') \mathbf{J}^{m}_{in}(\mathbf{r}',\omega) \right\} dV' + \sum_{k=1}^{K} \int_{S_{Mk}} \tilde{\Gamma}^{em}(\mathbf{r},\mathbf{r}'_{k\tau}) \mathbf{J}^{-}_{k\perp}(\mathbf{r}'_{k\perp}) dS' + \int_{S_{E}} \tilde{\Gamma}^{em}(\mathbf{r},\mathbf{r}'_{k\tau}) \mathbf{J}_{S}(\mathbf{r}'_{\tau}) dS',$$
(23)

$$\mathbf{H}(\mathbf{r},\omega) = \int_{V} \left\{ \tilde{\Gamma}^{me}(\mathbf{r},\mathbf{r}') \mathbf{J}^{e}_{in}(\mathbf{r}',\omega) + \tilde{\Gamma}^{mm}(\mathbf{r},\mathbf{r}') \mathbf{J}^{m}_{in}(\mathbf{r}',\omega) \right\} dV'$$

$$+\sum_{k=1}^{K}\int_{S_{Mk}}\tilde{\Gamma}^{mm}(\mathbf{r},\mathbf{r}_{k\tau}')\mathbf{J}_{k\perp}^{-}(\mathbf{r}_{k\perp}')dS'+\int_{S_{E}}\tilde{\Gamma}^{mm}(\mathbf{r},\mathbf{r}_{k\tau}')\mathbf{J}_{S}(\mathbf{r}_{\tau}')dS'.$$
(24)

Двусторонние токи, согласно (5) и (9), имеют вид

$$\begin{aligned} \mathbf{J}_{k\perp}(\mathbf{r}_{k\perp}) &= \mathbf{J}_{k\perp}^{+}(\mathbf{r}_{k\perp}) + \mathbf{J}_{k\perp}^{-}(\mathbf{r}_{k\perp}) \\ &= \mathbf{J}_{k\perp}(\mathbf{r}_{k\perp}, \mathbf{0}) - \mathbf{z}_{k0} \times \mathbf{H}(\mathbf{r}_{k\tau}, \omega) \\ &= \sum_{n=1}^{\infty} (\delta_{1k}\delta_{in} - a_{kn}) \, \frac{\mathbf{e}_{kn}(\mathbf{r}_{k\perp})}{Z_{kn}} \\ &- \mathbf{z}_{k0} \times \int_{V} \{\tilde{\Gamma}^{me}(\mathbf{r}_{k\tau}, \mathbf{r}') \mathbf{J}_{in}^{e}(\mathbf{r}', \omega) + \tilde{\Gamma}^{mm}(\mathbf{r}_{k\tau}, \mathbf{r}') \mathbf{J}_{in}^{m}(\mathbf{r}', \omega) \} dV' \\ &- \mathbf{z}_{k0} \times \left\{ \sum_{l=1}^{K} \int_{S_{Ml}} \tilde{\Gamma}^{mm}(\mathbf{r}_{k\tau}, \mathbf{r}'_{l\perp}) \mathbf{J}_{l\perp}^{-}(\mathbf{r}'_{l\perp}) dS' \right. \end{aligned}$$

$$(25)$$

Здесь $\mathbf{J}_{k\perp}^+(\mathbf{r}_{k\perp}) = \mathbf{J}_{k\perp}(\mathbf{r}_{k\perp}, 0), \quad \mathbf{J}_{k\perp}^-(\mathbf{r}_{k\perp}) = -\mathbf{z}_{k0} \times \mathbf{H}(\mathbf{r}_{k\tau}, \omega),$ также подразумевается, что поля (23), (24) в резонаторе взяты на поверхности S_k , чему соответствует обозначение $\mathbf{r}_{k\tau} \equiv \mathbf{r}$ при $\mathbf{r} \in S_k$. На апертурах магнитные поля непрерывны, поэтому там (25) обращается в нуль. Умножим (25) скалярно на $\mathbf{e}_{kn}^*(\mathbf{r}_{k\perp})$ и проинтегрируем по S_{Mk} (там, где оно отлично от нуля):

$$\int_{S_{Mk}} \mathbf{J}_{k\perp}(\mathbf{r}_{k\perp}) \mathbf{e}_{kn}^{*}(\mathbf{r}_{k\perp}) dS = \frac{(\delta_{1k}\delta_{in} - a_{kn})}{Z_{kn}}$$
$$- \int_{S_{Mk}} \mathbf{e}_{kn}^{*}(\mathbf{r}_{k\perp}) \Big\{ \mathbf{z}_{k0} \times \int_{V} \Big\{ \tilde{\Gamma}^{me}(\mathbf{r}_{k\tau}, \mathbf{r}') \mathbf{J}_{in}^{e}(\mathbf{r}', \omega)$$
$$+ \tilde{\Gamma}^{mm}(\mathbf{r}_{k\tau}, \mathbf{r}') \mathbf{J}_{in}^{m}(\mathbf{r}', \omega) \Big\} dV'$$
$$+ \mathbf{z}_{k0} \times \Big[\sum_{l=1}^{K} \int_{S_{Ml}} \tilde{\Gamma}^{mm}(\mathbf{r}_{k\tau}, \mathbf{r}'_{l\perp}) \mathbf{J}_{l\perp}^{-}(\mathbf{r}'_{l\perp}) dS'$$
$$+ \int_{S_{E}} \tilde{\Gamma}^{mm}(\mathbf{r}, \mathbf{r}'_{k\tau}) \mathbf{J}_{S}(\mathbf{r}'_{\tau}) dS' \Big] \Big\} dS.$$

Сшивание электрических полей приводит к функциональным соотношениям

$$\sum_{n=1}^{\infty} (\delta_{1k}\delta_{in} + a_{kn})\mathbf{e}_{kn}(\mathbf{r}_{k\perp})$$

$$= \int_{V} \{\tilde{\Gamma}^{ee}(\mathbf{r}_{k\tau}, \mathbf{r}')\mathbf{J}^{e}_{in}(\mathbf{r}', \omega) + \tilde{\Gamma}^{em}(\mathbf{r}_{k\tau}, \mathbf{r}')\mathbf{J}^{m}_{in}(\mathbf{r}', \omega)\}dV'$$

$$+ \sum_{l=1}^{K} \int_{S_{Ml}} \tilde{\Gamma}^{em}(\mathbf{r}_{k\tau}, \mathbf{r}'_{l\perp})\mathbf{J}^{-}_{l\perp}(\mathbf{r}'_{l\perp})dS'$$

$$+ \int_{S_{E}} \tilde{\Gamma}^{em}(\mathbf{r}, \mathbf{r}'_{k\tau})\mathbf{J}_{S}(\mathbf{r}'_{\tau})dS'.$$

Умножим их на $\mathbf{e}_{kn}^*(\mathbf{r}_{k\perp})$ и проинтегрируем по соответсвующим поперечным сечениям

$$\begin{split} \delta_{1k}\delta_{in} + a_{kn} &= \int\limits_{S_k} \int\limits_{V} \left\{ \mathbf{e}_{kn}^*(\mathbf{r}_{k\perp}) \tilde{\Gamma}^{ee}(\mathbf{r}_{k\tau}, \mathbf{r}') \mathbf{J}_{in}^e(\mathbf{r}', \omega) \right. \\ &+ \mathbf{e}_{kn}^*(\mathbf{r}_{k\perp}) \tilde{\Gamma}^{em}(\mathbf{r}_{k\tau}, \mathbf{r}') \mathbf{J}_{in}^m(\mathbf{r}', \omega) \right\} dV' dS \\ &+ \sum_{l=1}^K \int\limits_{S_k} \int\limits_{S_{Ml}} \mathbf{e}_{kn}^*(\mathbf{r}_{k\perp}) \tilde{\Gamma}^{em}(\mathbf{r}_{k\tau}, \mathbf{r}_{l\perp}') \mathbf{J}_{l\perp}^-(\mathbf{r}_{l\perp}') dS dS' \\ &+ \int\limits_{S_k} \int\limits_{S_E} \mathbf{e}_{kn}^*(\mathbf{r}_{k\perp}) \tilde{\Gamma}^{em}(\mathbf{r}, \mathbf{r}_{k\perp}') \mathbf{J}_S(\mathbf{r}_{\tau}') dS dS'. \end{split}$$

Поэтому искомые распределения поверхностной плотности тока должны удовлетворять соотношениям, полу-

чаемым при исключении амплитуд *a_{kn}*:

$$a_{kn} = \delta_{1k}\delta_{in} - Z_{kn} \int_{S_{Mk}} \mathbf{J}_{k\perp}(\mathbf{r}_{k\perp}) \mathbf{e}_{kn}^{*}(\mathbf{r}_{k\perp}) dS$$

$$- Z_{kn} \int_{S_{Mk}} \mathbf{e}_{kn}^{*}(\mathbf{r}_{k\perp}) \left\{ \mathbf{z}_{k0} \times \int_{V} \left\{ \tilde{\Gamma}^{me}(\mathbf{r}_{k\tau}\mathbf{r}') \mathbf{J}_{in}^{e}(\mathbf{r}', \omega) \right\}$$

$$+ \tilde{\Gamma}^{mm}(\mathbf{r}_{k\tau}, \mathbf{r}') \mathbf{J}_{in}^{m}(\mathbf{r}', \omega) \right\} dV'$$

$$+ \mathbf{z}_{k0} \times \left[\sum_{l=1}^{K} \int_{S_{Ml}} \tilde{\Gamma}^{mm}(\mathbf{r}_{k\tau}, \mathbf{r}'_{l\perp}) \mathbf{J}_{l\perp}^{-}(\mathbf{r}'_{l\perp}) dS'$$

$$+ \int_{S_{E}} \tilde{\Gamma}^{mm}(\mathbf{r}, \mathbf{r}'_{k\tau}) \mathbf{J}_{S}(\mathbf{r}'_{\tau}) dS' \right] \right\} dS = -\delta_{1k}\delta_{in}$$

$$+ \int_{S_{k}} \int_{V} \left\{ \mathbf{e}_{kn}^{*}(\mathbf{r}_{k\perp}) \tilde{\Gamma}^{ee}(\mathbf{r}_{k\tau}, \mathbf{r}') \mathbf{J}_{in}^{e}(\mathbf{r}', \omega) \right\} dV' dS$$

$$+ \mathbf{e}_{kn}^{*}(\mathbf{r}_{k\perp}) \tilde{\Gamma}^{em}(\mathbf{r}_{k\tau}, \mathbf{r}') \mathbf{J}_{in}^{m}(\mathbf{r}, \omega) \right\} dV' dS$$

$$+ \sum_{l=1}^{K} \int_{S_{k}} \int_{S_{Ml}} \mathbf{e}_{kn}^{*}(\mathbf{r}_{k\perp}) \tilde{\Gamma}^{em}(\mathbf{r}_{k\tau}, \mathbf{r}'_{l\perp}) \mathbf{J}_{l\perp}^{-}(\mathbf{r}'_{l\perp}) dS dS'$$

$$+ \int_{S_{k}} \int_{S_{E}} \mathbf{e}_{kn}^{*}(\mathbf{r}_{k\perp}) \tilde{\Gamma}^{em}(\mathbf{r}, \mathbf{r}'_{k\tau}) \mathbf{J}_{S}(\mathbf{r}'_{\tau}) dS dS'.$$
(26)

Указанных соотношений бесконечное число (n = 1, 2, ...). Кроме того, на электрическое поле (17) должны быть наложены условия $\mathbf{E}_{\tau}(\mathbf{r}_{\tau}) = \rho(\mathbf{r}_{\tau})\mathbf{J}_{S}(\mathbf{r}_{\tau})$ на S_{E} и $\mathbf{E}_{k\perp}(\mathbf{r}_{k\perp}, 0) = \rho(\mathbf{r}_{k\perp})\mathbf{J}_{k\perp}(\mathbf{r}_{k\perp})$ на S_{Mk} , что приводит к функциональным соотношениям $\mathbf{v}(\mathbf{r}_{\tau}) \times \mathbf{E}(\mathbf{r}_{\tau}, \omega) \times \mathbf{v}(\mathbf{r}_{\tau}) = \rho(\mathbf{r}_{\tau})\mathbf{H}(\mathbf{r}_{\tau}, \omega) \times \mathbf{v}(\mathbf{r}_{\tau})$ и

$$\sum_{n=1}^{\infty} (\delta_{1k} \delta_{in} + a_{kn}) \mathbf{e}_{kn}(\mathbf{r}_{k\perp}) = \rho(\mathbf{r}_{k\perp}) \mathbf{J}_{k\perp}(\mathbf{r}_{k\perp}),$$
$$k = 1, 2, \dots, K.$$
(27)

Другая система функциональных соотношений следует из (25):

$$\mathbf{J}_{k\perp}(\mathbf{r}_{k\perp}) = \sum_{n=1}^{\infty} (\delta_{1k}\delta_{in} - a_{kn}) \, \frac{\mathbf{e}_{kn}(\mathbf{r}_{k\perp})}{Z_{kn}} + \mathbf{J}_{k\perp}^{-}(\mathbf{r}_{k\perp}),$$
$$k = 1, 2, \dots, K. \tag{28}$$

Эти функциональные соотношения при подстановке в них коэффициентов (26) превращаются в связанные импедансные ИУ для определения $\mathbf{J}_{k\perp}$, $\mathbf{J}_{k\perp}^-$ и \mathbf{J}_S . Можно выписать несколько видов указанных ИУ, в том числе и для односторонних плотностей тока $\mathbf{J}_{k\perp}^+$, $\mathbf{J}_{k\perp}^-$, \mathbf{J}_S , что мы, однако, делать не будем, учитывая ограниченный объем работы. Таким образом, импедансные ИУ в общем виде для ВТ имеют более сложную структуру, чем в простейшем случае ВТ типа диафрагмы или плоского препятствия в волноводе [18–20]. В частном случае S_{Mk} могут отсутствовать, а S_E совпадать с S, и тогда получаем ИУ для J_S .

Обобщение для неидеальных стенок и включений

Рассмотрим сначала обобщение полученных соотношений на случай произвольных магнитодиэлектрических включений. Пусть указанные включения с комплексными неоднородными тензорными проницаемостями $\hat{\varepsilon}(\mathbf{r}, \omega), \hat{\mu}(\mathbf{r}, \omega)$ занимают объем $V_{\varepsilon\mu} \subset V_0$. Указанное тело создает вторичные поля, обусловленные их токами поляризации (\hat{I} — единичный тензор)

$$\mathbf{J}_{P}^{m}(\mathbf{r},\omega) = j\omega\varepsilon_{0}\left(\hat{\varepsilon}(\mathbf{r},\omega) - \hat{I}\right)\mathbf{E}(\mathbf{r},\omega),$$
$$\mathbf{J}_{P}^{m}(\mathbf{r},\omega) = j\omega\varepsilon_{0}\left(\hat{\mu}(\mathbf{r},\omega) - \hat{I}\right)\mathbf{H}(\mathbf{r},\omega), \qquad (29)$$

поэтому в полные поля (13), (14) и (23), (24) следует подставить соотношения соответственно (6) и (7), в которых интегрирование осуществляется по объему $V_{\varepsilon\mu}$ с токами поляризации (29). Это приводит к комбинированным объемно-поверхностным ИУ. Если внутри резонатора находится металлическое тело с поверхностью S_{σ} , по которой течет поверхностный ток с плотностью J_S , то к полным полям следует добавить соответственно члены

$$\int\limits_{S_{\sigma}} \Gamma^{ee}(\mathbf{r},\mathbf{r}') \mathbf{J}_{S}(\mathbf{r}',\omega) dS', \quad \int\limits_{S_{\sigma}} \Gamma^{me}(\mathbf{r},\mathbf{r}') \mathbf{J}_{S}(\mathbf{r}',\omega) dS'.$$

При этом на указанной поверхности необходимо потребовать выполнения импедансных условий. Указанная поверхность может быть как замкнутой односторонней, так и бесконечно токной разомкнутой двусторонней.

Отметим теперь следующее. Под ФГ в (6), (7) можно понимать функции, построенные для произвольно заполненного резонатора, в том числе и содержащего произвольные металлические и диэлектрические тела. Собственно, при построении теории возбуждения резонаторов в [10] именно последнее и предположено. Тогда объемные члены в ИУ не возникают. Однако такой подход неконструктивен, поскольку построить указанные ФГ практически невозможно. Для полых резонаторов простейших форм (прямоугольной и цилиндрической) ФГ известны аналитически. Для полых резонаторов сложной формы не представляет труда получить алгоритм построения таких ФГ (для сферического резонатора и цилидрического резонатора со связью по боковой поверхности уже необходимо численно строить указанные функции в силу наличия плоских поверхностей S_k). Кроме того, такой подход предполагает отсутствие дисперсии, а следовательно, и потерь. Однако в реальных веществах всегда имеются дисперсия и потери, что приводит к несамосопряженности задачи на собственные значения, резонансные частоты становятся комплексными, а соотношения ортогональности и формулы возбуждения — приближенными. В силу этого для строгой постановки задачи необходимо использовать собственные функции пустого резонатора.

Наконец, рассмотрим вопрос обобщения полученных ИУ для неидеальных стенок. Пусть имеется резонатор с неидеальной металлической поверхностью S, на которой выполнены импедансные условия Леонтовича. Тогда, следуя [10], проведем в металлических стенках на глубине нескольких скин-слоев охватывающую поверхность S', которую будем считать идеальной. Образованный металлический слой будем учитывать как диэлектрик с большими потерями и проницаемостью, соответствующей проводимости σ . При этом не важно, электрической или магнитной стенкой является поверхность S', поскольку поле ее "не чувствует". Возможно и другое обобщение на случай импедансных стенок. Именно, неидеальность металлической поверхности приводит к появлению на ней касательного электрического поля, которое можно трактовать как плотность поверхностного магнитного тока

$$\mathbf{J}_{S}^{m}(\mathbf{r}_{\tau},\omega) = -\boldsymbol{\nu}(\mathbf{r}_{\tau}) \times \mathbf{E}(\mathbf{r}_{\tau},\omega)$$
$$= -\boldsymbol{\nu}(\mathbf{r}_{\tau}) \times \boldsymbol{\rho}(\mathbf{r}_{\tau},\omega) \mathbf{J}_{S}(\mathbf{r}_{\tau},\omega).$$
(30)

Рассмотрим резонатор с идеально поводящими стенками. Формально поля в нем поддерживаются поверхностными электрическими токами. Если же стенки не идеально проводящие, то необходио добавить соответствующие члены для поверхностных магнитных токов, считая при этом, что $\Phi\Gamma$ получены для идеально проводящих условий. Таким образом, вместо (6), (7) будем иметь

$$\mathbf{E}(\mathbf{r},\omega) = \int_{V} \left\{ \Gamma^{ee}(\mathbf{r},\mathbf{r}') \mathbf{J}^{e}_{in}(\mathbf{r}',\omega) + \Gamma^{em}(\mathbf{r},\mathbf{r}') \mathbf{J}^{m}_{in}(\mathbf{r}',\omega) \right\} dV' + \int_{S_{0}} \Gamma^{em}(\mathbf{r},\mathbf{r}'_{\tau}) \mathbf{J}^{m}_{S}(\mathbf{r}',\omega) dS',$$
(31)

$$\mathbf{H}(\mathbf{r},\omega) = \int_{V} \left\{ \Gamma^{me}(\mathbf{r},\mathbf{r}') \mathbf{J}_{in}^{e}(\mathbf{r}',\omega) + \Gamma^{mm}(\mathbf{r},\mathbf{r}') \mathbf{J}_{in}^{m}(\mathbf{r}',\omega) \right\} dV' + \int_{S_{0}} \Gamma^{mm}(\mathbf{r},\mathbf{r}'_{\tau}) \mathbf{J}_{S}^{m}(\mathbf{r}',\omega) dS'.$$
(32)

С учетом (30) это приводит к дополнительному поверхностному ИУ на поверхности S. Пусть δ — толщина скин-слоя в стенках. Тогда, сдвигая S' относительно S на глубину нескольких скин-слоев $\Delta = n\delta$, получим нулевые граничные условия с погрешностью порядка e^{-n} , т. е. менее 1% уже при n = 5. Заменив неидеальный металлический слой толщины Δ импедансным условием, получим погрешность порядка Δ/D , где D — средний размер резонатора $D = \oint_{S_0} |\mathbf{r}| dS/S_0$. При этом импедансное условие следует налагать на поверхности S. При наложении такого условия на S' также получаем погрешность порядка Δ/D , т.е. общая погрешность будет порядка $2\Delta/D + e^{-n}$. Такая же погрешность получается и при использовании теории возбуждения для идеальной поверхности S и наложении в ней импедансного условия.

Еще один способ обобщения на случай неидеально проводящих стенок состоит в использовании метода возмущений [1,10] для собственных мод и частот в (1). Введение малого импеданса ρ в первом приближении не изменяет собственные моды, которые можно использовать для вычисления потока вектора Пойтинга через поверхность резонатора и определить поправки к собственным частотам, которые приобретают мнимые добавки, при этом их реальные части изменяются незначительно. Используя стационарные свойства функционалов для собственных частот и их квадратов [1], можно получить указанные поправки и в высших приближениях, при этом собственные функции при выражении ФГ удобно оставить без изменения. Такой подход особенно перспективен для резонаторов, ограниченных координатными поверхностями.

4. Численные алгоритмы

Полученные ИУ являются обобщением известных поверхностных и объемных ИУ, поэтому их свойства и методы их решения аналогичны указанным уравнениям. В общем случае возбуждение ВТ описывается связанными комбинированными поверхностно-объемными ИУ. При этом можно рассматривать адмитансные, импедансные и смешанные алгоритмы сшивания полей в поперечных сечениях каналов. При отсутствии магнитодиэлектрических включений поверхностные ИУ в общем виде имеют иммитансный характер. Ядра указанных ИУ имеют сильные неинтегрируемые сингулярности порядка $|{\bf r} - {\bf r}'|^{-3}$ типа производных потенциала двойного слоя. Данные сингулярности содержатся как в поверхностных, так и в объемных членах ядер и обусловлены свойствами тензорных ФГ в (6), (7) и выражениями типа (21), в которых соответствующий волноводу член есть поперечная часть (двумерный тензор) его тензорной ФГ для поперечных источников.

Указанные сингулярности можно понизить, перенеся операции дифференцирования с ядер на подынтегральные функции и преобразовав тем самым исходные ИУ, при этом для объемных, вообще говоря, возникают поверхностные интегралы, а для поверхностных — контурные. Оператор, соответствующий преобразованным ИУ со слабосингулярными ядрами, является фредгольмовым. При этом класс функций, в которых ищется решение, можно расширить. Для непреобразованных ИУ следует использовать методы решения, аналогичные [21,22]. В частности, решение следует искать в классе непрерывно дифференцируемых функций, удовлетворяющих условиям Мейкснера. Так, необходимым условием является обращение в нуль нормальной компоненты плотности тока на кромке идеально проводящей поверхности S_{Mk} и обращение в нуль касательной компоненты электрического поля на металлической кромке. Кроме этого, нормальная компонента электрического поля у металлических кромок, граничащих с S_{Ak}, должна возрастать по определенным законам. Для кромки поверхности S_{Mk} это обратная корневая зависимость от расстояния, а для остальной части апертуры она определяется углом кромки окна связи волновода с резонатором. Для импедансных поверхностей S_{Mk} указанные условия накладывать нет необходимости, при этом ИУ Фредгольма первого рода типа (20) превращаются в ИУ Фредгольма второго рода типа (22). В этом случае, однако, ядра не изменяются, и их сильные сингулярности остаются. Но поскольку указанные ИУ определены на всем поперечном сечении, тогда для решения можно воспользоваться его базисом e_{kn} . При отсутствии возбуждения (как падающей волной, так и сторонними токами) ИУ становятся однородными и определяют собственные моды и комплексные резонансные частоты открытого через полубесконечные волноводы резонатора. Уравнения возбуждения несколькими волнами в ряде каналов выписываются просто из полученных с использованием принципа суперпозиции.

В качестве численного примера на рис. 1 и 2 приведены расчеты возбуждения прямоугольного резонатора с потерями через прямоугольный волновод падающей *H*₁₀-волной последнего. Волновод подключен под прямым углом по центру грани резонатора, при этом апертура совпадает с поперечным сечением волновода. Собственные моды резонатора в виде идеально прово-

Рис. 1. Модуль коэффициента отражения при возбуждении резонатора в виде прямоугольного параллелепипеда с размерами $a_x = 5.0, a_y = 4.0$ (грань с окном связи) и $a_z = 1.0$ (размеры в сm): I — проводимость $\sigma = 5.7 \cdot 10^7$ S на торцевой грани, противоположной окну; $2 - 5.7 \cdot 10^7$ S на всей поверхности; $3 - 5.7 \cdot 10^6$ S на всей поверхности; $4 - 5.7 \cdot 10^5$ S на всей поверхности; 5 -случай 4 при заполнении резонатора диэлектриком $\varepsilon = 4.0 - j0.04$.

Рис. 2. Фаза коэффициента отражения при возбуждении резонатора в виде прямоугольного параллелепипеда, соответствующего рис. 1.

дящего прямоугольного параллелепипеда известны [10], известны также и ΦГ [12], в том числе и при заполнении плоскопараллельными слоями диэлектрика (см., например, [23]), поэтому задача имеет наиболее простую формулировку. Указанную задачу, как при идеально проводящих стенках резонатора, так и при импедансных, можно решить другими методами [21,22,24]. Нетрудно показать, что использованием метода сшивания при разложении полей в резонаторе по стоячим волнам соответствующего волновода эквивалентно ИУ (20).

Выводы

Получены уравнения возбуждения произвольного экранированного ВТ сторонними токами внутри него и падающими из бесконечности собственными волнами в его каналах, являющиеся обобщением известных импедансных и адмитансных уравнений для возбуждения волноводов с неоднородностями падающими собственными модами. Формулировка указанных уравнений требует знания (предварительного определения) собственных волн волноводов и собственных мод резонатора с условиями идеальных электрических и идеальных магнитных стенок (или тензорных $\Phi\Gamma \Gamma^{\alpha\beta}$, $\tilde{\Gamma}^{\alpha\beta}$, $\alpha, \beta = e, m$). Уравнения обобщены на случай произвольных включений и для неидеальных стенок резонатора. Обобщение на случай неидеальных стенок волноводов также возможно, но требует отдельного рассмотрения. Это же относится и к случаям открытого BT и нестационарного возбуждения (см., например, [3-5,15,25]). Обобщение для сложного ВТ, составленного из нескольких простых, осуществляется с использовнием методов обобщенных многомодовых матриц рассеяния и излучения [2]. Возможность наличия условий в виде идеальных магнитных стенок для полей (1) носит не только теоретический интерес. Магнитные стенки удобны, например, для описания связи двух симметричных ВТ при синфазном возбуждении и позволяют понизить размерность задачи. Пример анализа возбуждения заданным током ВТ в виде цилиндрического резонатора, соединенного с коаксиальной линией, был дан в работе [26].

Список литературы

- [1] Никольский В.В. Вариационные методы для внутренних краевых задач электродинамики. М.: Наука, 1967. 460 с.
- [2] Автоматизированное проектирование устройств СВЧ / Под ред. В.В. Никольского. М.: Радио и связь, 1982. 272.
- [3] Давидович М.В. // Моделирование в прикладной электродинамике и электронике. Саратов: Изд-во Сарат. ун-та. Вып. 6. 2005. С. 4–12.
- [4] Давидович М.В. // Изв. Сарат. ун-та. Новая серия. 2005.
 Т. 5. Сер. Физика. Вып. 1. С. 68–83.
- [5] Давидович М.В. // ЖТФ. 2006. Т. 76. Вып. 1. С. 13-23.
- [6] Свешников А.Г. // Научн. докл. высш. шк. Физ-мат. науки. 1959. № 2. С. 162–165.
- [7] Свешников А.Г. // ЖВМиМФ. 1963. Т. З. № 1. С. 170–179.
- [8] Свешников А.Г., Котик И.П., Чернышев Ю.С. // Вычислительные методы и программирование. М.: Изд-во МГУ, Вып. 1. 1962. С. 234–244.
- [9] Свешников А.Г., Ильинский А.С. // ЖВМиМФ. 1963. Т. 3. С. 478–488.
- [10] Вайнштейн Л.А. Электромагнитные волны. М.: Радио и связь, 1988. 440 с.
- [11] Марков Г.Т., Чаплин А.Ф. Возбуждение электромагнитных волн. М.: Радио и связь, 1983. 296 с.
- [12] *Марков Г.Т., Панченко Б.А.* // Изв. вузов. Радиотехника. 1964. Т. 7. № 1. С. 34–41.
- [13] Фелсен Л., Маркувиц Н. Излучение и рассеяние волн. М.: Мир, 1978. Т. 1. 548 с.
- [14] Васильев Е.Н. Возбуждение тел вращения. М.: Радио и связь, 1987. 272 с.
- [15] Давидович М.В. // РиЭ. 2001. Т. 46. № 10. С. 1198–1205.
- [16] Михлин С.Г. Вариационные методы в математической физике. М.: Наука, 1970. 512 с.
- [17] *Фельд Я.Н.* Основы теории щелевых антенн. М.: Сов. радио, 1948. 160 с.
- [18] Швингер Ю. // Зарубежная радиоэлектроника. 1970. № 3. С. 3–106.
- [19] Никольский В.В. // РиЭ. 1975. Т. 20. № 3. С. 457–467.
- [20] Никольский В.В. // РиЭ. 1977. Т. 22. № 4. С. 657–669.
- [21] Моденов В.П. // РиЭ. 1995. Т. 40. № 5.
- [22] Воскресенский Г.В., Галстьян Е.А., Журав С.М. // ЖВМиМФ. 1983. Т. 23. № 5. С. 1257–1262.
- [23] Малец Е.Б., Фесенко В.И., Шульга С.Н. // РиЭ. 2000. Т. 45. № 5. С. 523–530.
- [24] Давидович М.В., Алексеев О.Ю. // РиЭ. 2004. Т. 49. № 6. С. 665–670.
- [25] Давидович М.В. РиЭ. 2001. Т. 2001. Т. 46. № 11. С. 1285– 1292.
- [26] Davidovich M.V. // IEEE Transact. On Microwave Theory and Techniques. 1999. Vol. MTT-47. N 3. P. 265–270.