02:03:07

Инициирование детонационной волны при обтекании клина сверхзвуковым потоком водородно-кислородной смеси резонансным лазерным излучением

© Л.В. Безгин, В.И. Копченов, А.М. Старик, Н.С. Титова

Центральный институт авиационного моторостроения им. П.И. Баранова, 111116 Москва, Россия e-mail: star@ciam.ru

(Поступило в Редакцию 11 апреля 2006 г.)

Проанализированы особенности формирования наклонной детонационной волны при обтекании сверхзвуковым потоком водородно-кислородной смеси плоского клина. Показано, что возбуждение электронного состояния $b^1\Sigma_g^+$ молекулярного кислорода резонансным лазерным излучением с длиной волны 762 nm позволяет осуществить детонационное горение на расстоянии ~ 1 m от носика клина при низкой температуре газа (500–600 K). При этом достаточно проводить облучение газа в узкой приосевой области потока с поперечным размером 0.5-1 cm перед носиком клина. Показано, что лазерно-индуцированное возбуждение молекулярного кислорода в несколько раз эффективнее простого нагрева смеси для инициирования детонационной волны.

PACS: 47.40.Rs, 42.62.-b

Введение

Реализация детонационного горения смеси в сверхзвуковом потоке позволяет не только существенно сократить длину зоны энерговыделения по сравнению с обычным гомогенным или диффузионным режимами горения, но и получить более высокие значения температуры и давления газа [1]. Анализу возможности реализации детонационного горения в горючих смесях, движущихся со сверхзвуковой скоростью, посвящено значительное число работ [2-6]. Было показано, что при воспламенении смеси, в зависимости от геометрии и параметров газа в потоке, могут возникать различные типы как стационарных, так и нестационарных режимов горения и, в частности, детонационный режим. Важнейшими задачами при реализации детонационного горения являются стабилизация детонационной волны в сверхзвуковом потоке и инициирование воспламенения смеси при невысоких значениях температуры газа. Самой простой схемой течения, в которой достигается стабилизация детонационной волны, является обтекание клина или конуса сверхзвуковым потоком горючей смеси. Воспламенение здесь происходит за фронтом наклонной ударной волны, центрированной на носике клина, а детонационная волна формируется на некотором расстоянии от поверхности клина в результате взаимодействия волны сжатия, возникающей в зоне горения (тепловыделения), с фронтом наклонной ударной волны [2]. При небольших полууглах раскрытия клина ($\beta = 8-10^{\circ}$) расстояние, на котором формируется детонационная волна в практически интересном диапазоне параметров потока (давление $P_0 = 10^3 - 10^4 \, \mathrm{Pa}$, температура $T_0 = 400 - 700 \,\mathrm{K}$ и число Маха $M_0 = 4 - 6$), даже для водородно-кислородной смеси слишком велико $(\sim 10\,{\rm m})$ [7]. Поэтому поиск методов интенсификации

процессов формирования детонационной волны в такой геометрии является исключительно важной задачей.

Недавние исследования [8,9] показали, что существенного сокращения длины зон воспламенения и тепловыделения в сверхзвуковом потоке смесей H_2/O_2 (воздух) и CH_4/O_2 (воздух) за фронтом наклонной ударной волны можно добиться, возбуждая молекулы O_2 в электронное состояние $b^1\Sigma_g^+$ лазерным излучением с длиной волны $\lambda_I=762$ nm, генерируемым, например, диодным лазером, даже при малых значениях подведенной к газу энергии излучения ($E_a\sim 10^{-3}\ \mathrm{J/cm^3}$). Представляет интерес провести анализ эффективности использования такого метода для сокращения длины зоны формирования детонационной волны при обтекании клина горючей смесью. Такой анализ и проводится в данной работе.

Постановка задачи и физико-математическая модель

Рассмотрим обтекание клиновидного тела с полууглом раскрытия β сверхзвуковым потоком смеси $\mathrm{H}_2/\mathrm{O}_2$. Пусть на поток перед носиком клина в некоторой области, длина которой вдоль потока равна l_p , а высота равна Y_e , действует излучение с длиной волны $\lambda_I=762$ nm, интенсивность которого одинакова во всей области воздействия. Частота этого излучения ν_I резонансна частоте связанно-связанного электронного перехода $m(X^3\Sigma_g^-,V'=0,J'=9,K'=8) \rightarrow n(b^1\Sigma_g^+,V''=0,J''=8,K''=8)$ молекулы O_2 , где V' и V'' — колебательные, а J',K' и J'',K'' — вращательные квантовые числа в состояниях $X^3\Sigma_g^-$ и $b^1\Sigma_g^+$ соответственно. При заданных J',K' и J'',K'' величина коэффициента поглощения для рассматриваемого электронно-колебательного перехода максимальна при температуре газа $T=300\,\mathrm{K}$.

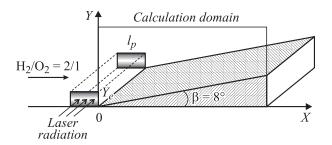


Рис. 1. Схема течения и расчетная область.

Схема течения приведена на рис. 1. Параметры потока перед зоной воздействия: $P_0=10^4\,\mathrm{Pa},\ T_0=500-600\,\mathrm{K},\ M_0=6.$

Как и в [8,9], будем рассматривать электронно-возбужденные молекулы $O_2(b^1\Sigma_g^+)$, $O_2(a^1\Delta_g)$ и атомы $O(^1D)$, которые могут возникать в реагирующей смеси вследствие протекания химических реакций и процессов электронно-электронного обмена, как отдельные химические компоненты с соответствующей энтальпией образования и полагать, что колебательные, вращательные и поступательные степени свободы молекул смеси находятся в термодинамическом равновесии.

Анализ проведен для случая, когда $l_p \ll L_v$, где L_v длина поглощения. В этом случае анализ можно проводить, используя приближение оптически тонкого слоя. Газодинамика течения реагирующего газа H_2/O_2 при наличии электронно-возбужденных молекул $O_2(b^1\Sigma_g^+)$ и $O_2(a^1 \Delta_g)$ и слоя смешения, возникающего на границе внешнего и внутреннего (подверженного воздействию излучения) потоков, рассматривалась в рамках осредненных параболизованных уравнений Навье-Стокса. При этом полагалось, что смешение определяется турбулентным переносом, а коэффициенты турбулентной диффузии одинаковы для всех компонентов. Кроме того, считалось, что для всех компонентов числа Льюиса равны единице. Систему уравнений, описывающую физикохимические и газодинамические процессы в сверхзвуковом потоке, можно представить в следующем виде:

$$\frac{\partial \mathbf{E}}{\partial x} + \frac{\partial (\mathbf{F} + \mathbf{F}_{v})}{\partial y} = \mathbf{G}, \tag{1}$$

$$\mathbf{E} = \begin{pmatrix} \rho u \\ \rho u^{2} + P \\ \rho u v \\ \rho u (H + V^{2}/2) \end{pmatrix}, \quad \mathbf{F} = \begin{pmatrix} \rho v \\ \rho u v \\ \rho v^{2} + P \\ \rho v (H + V^{2}/2) \end{pmatrix},$$

$$\mathbf{F}_{v} = \begin{pmatrix} 0 \\ \sigma_{yx} \\ \sigma_{yy} \\ q_{y} \\ \|J_{i}^{y}\| \end{pmatrix}, \quad \mathbf{G} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ Q_{I} \\ \|q_{ch}^{i} + q_{I}^{i}\| \end{pmatrix},$$

$$\sigma_{yx} = -\mu_{T} \frac{\partial u}{\partial y}, \quad \sigma_{yy} = -\frac{4}{3} \mu_{T} \frac{\partial v}{\partial y},$$

$$q_{y} = u \sigma_{yx} + v \sigma_{yy} - \frac{\mu_{T}}{\mathbf{Pr}_{T}} \frac{\partial H}{\partial y}, \quad J_{i}^{y} = -\frac{\mu_{T}}{\mathbf{Pr}_{T}} \frac{\partial (N_{i}/\rho)}{\partial y}.$$

Здесь u, v — проекции вектора скорости на оси OX и OY соответственно, $V = \sqrt{u^2 + v^2}$; P и ρ — давление и плотность газа; Н — удельная энтальпия смеси; $\|uN_i\|, \|vN_i\|, \|J_i^y\|$ и $\|q_{ch}^i+q_I^i\|$ — одностолбцовые матрицы размерности M (M — число компонентов в смеси); N_i — плотность молекул i-го компонента смеси (далее i = 1, 2, 3 соответствуют молекулярному кислороду в основном $O_2(X^3\Sigma_g^-)$ и в возбужденных $O_2(a^1\Delta_g)$, $O_2(b^1\Sigma_g^+)$ состояниях); Pr_T — турбулентное число Прандтля; $\mu_T = \rho \nu_T$, ν_T — турбулентная вязкость. При проведении расчетов полагалось $Pr_T = 0.9$. Для замыкания системы уравнений привлекается однопараметрическая дифференциальная модель для турбулентной вязкости [10]. Выражения для энтальпии смеси H, а также источников q_{ch}^i и q_I^i , определяющих изменение концентрации і-го компонента в смеси в результате протекания химических реакций и индуцированных переходов, удобно представить в виде

$$H = \sum_{i=1}^{M} \frac{h_{0i}}{\mu} \gamma_{i} + C_{p}T,$$

$$C_{p} = \frac{R}{\mu} \left(\frac{5}{2} + \sum_{i=1}^{S} C_{R}^{i} \gamma_{i} + \sum_{i=1}^{S} C_{v}^{i} \gamma_{i}\right),$$

$$C_{v}^{i} = \sum_{j=1}^{L} \left(\frac{\theta_{ij}}{T}\right)^{2} \frac{\exp(\theta_{ij}/T)}{[\exp(\theta_{ij}/T) - 1]^{2}},$$

$$\mu = \sum_{i=1}^{M} \mu_{i} \gamma_{i}, \quad P = \frac{\rho RT}{\mu}, \quad \gamma_{i} = \frac{N_{i}}{N}, \quad N = \sum_{i=1}^{M} N_{i},$$

$$q_{ch}^{i} = \sum_{q=1}^{M_{1i}} S_{iq}, \quad S_{iq} = (\alpha_{iq}^{-} - \alpha_{iq}^{+}) \lfloor R_{q}^{+} - R_{q}^{-} \rfloor,$$

$$R_{q}^{+(-)} = k_{+(-)q} \prod_{j=1}^{n_{q}^{+(-)}} N_{J}^{\alpha_{iq}^{+(-)}}, \quad Q_{I} = k_{v}I,$$

$$q_{I}^{i} = l_{iI} W_{I} \left(\frac{g_{n}}{g_{m}} N_{m} - N_{n}\right), \quad W_{I} = \frac{\sigma_{mn}I}{hv_{I}},$$

$$\sigma_{mn} = \frac{\lambda_{mn}^{2}}{4\pi b_{D}} A_{mn} \sqrt{\frac{\ln 2}{\pi}} H(x, a),$$

$$k_{v} = \sigma_{mn} \left(\frac{g_{n}}{g_{m}} N_{m} - N_{n}\right), \quad N_{m} = N_{1} \varphi_{m}, \quad N_{n} = N_{3} \varphi_{n},$$

$$\varphi_{m} = \frac{g_{m}B_{v'}}{kT} \frac{\exp(-\theta_{1}v'/T)}{1 - \exp(-\theta_{1}/T)} \exp\left(-\frac{E_{j'}}{kT}\right),$$

$$\varphi_{n} = \frac{g_{n}B_{v''}}{kT} \frac{\exp(-\theta_{1}v''/T)}{1 - \exp(-\theta_{1}/T)} \exp\left(-\frac{E_{j''}}{kT}\right).$$

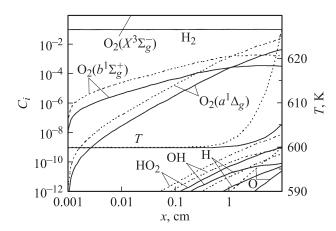
Здесь μ_i — молярная масса i-го компонента смеси; h_{0i} — энтальпия образования i-го компонента при $T=298~{\rm K};~S$ — число только молекулярных компонентов; $C_R^i=1$ — для компонентов из линейных молекул и $C_R^i=1.5$ — для компонентов из нелинейных молекул;

 θ_{ij} — характеристическая колебательная температура j-й моды для i-го компонента ($j=1\div L$); M_{1i} — число реакций, приводящих к образованию (уничтожению) і-го компонента; α_{iq}^+ и α_{iq}^- — стехиометрические коэффициенты q-й реакции; $n_q^{+(-)}$ — число компонентов, участвующих в прямой (+) и обратной (-) реакциях; $k_{+(-)q}$ константы скорости этих реакций; R — универсальная газовая постоянная; h — постоянная Планка; k постоянная Больцмана; l_{iI} — число квантов, теряемых (приобретаемых) *i*-м компонентом при индуцированных переходах; N_m и N_n — число молекул в нижнем и верхнем состояниях поглощающего перехода $m \to n, g_m$ и g_n — кратности вырождения этих состояний; λ_{mn} длина волны, соответствующая центру спектральной линии поглощающего перехода; A_{mn} — коэффициент Эйнштейна; b_D — допплеровская ширина спектральной линии перехода $m \to n$, H(x,a) — функция Фойхгта; B_v — вращательная постоянная молекулы O_2 в состоянии $v^{-}(v' \in m, v'' \in n)$; $E_{i'}$ и $E_{i''}$ — вращательные энергии молекулы O_2 в состояниях m и n. Их значения вычислялись с учетом расщепления уровня j' в состоянии $X^3\Sigma_g^-$ на три компонента с $j' = K' + 1, \ j' = K'$ и j' = K' - 1.

Кинетическая модель, которая использовалась в данной работе, включает 89 обратимых химических реакций с участием H_2 , H, H_2O , OH, HO_2 , H_2O_2 , O_3 , $O_2(X^3\Sigma_g^-)$, $O_2(a^1\Delta_g)$, $O_2(b^1\Sigma_g^+)$, $O(^3P)$, $O(^1D)$, а также процессы электронно-электронного (E-E) обмена и процессы тушения возбужденных молекул $O_2(a^1\Delta_g)$, $O_2(b^1\Sigma_g^+)$ и атомов $O(^1D)$ [8]. Константы скоростей соответствующих процессов и необходимые для расчета молекулярные и спектроскопическике постоянные были взяты такими же, как в [8].

Для численного интегрирования системы уравнений (1) использовался маршевый метод, в основе которого лежит стационарный аналог метода Годунова [11]. Для аппроксимации источниковых членов Q_I , q_c^i , q_I^i использовалась неявная разностная схема, а для аппроксимации конвективных членов в (1) — метод "предиктор-корректор", имеющий второй порядок точности. Для определения параметров потока и концентраций компонентов на новом пространственном слое применялась специальная процедура, основанная на методе Гаусса—Зейделя. Для разрешения областей с большими градиентами параметров использовалась адаптивная сетка. Проводился специальный анализ по определению сходимости численного решения. При этом количество расчетных точек по оси OY доходило до 500.

Инициирование детонационного горения при ларезно-индуцированном возбуждении молекул O₂


Как было показано в [8,9], концентрация возбужденных молекул O_2 в зоне воздействия определяется величиной энергии излучения, поглощенной одной

молекулой O_2 ,

$$E_s = I_0 \int_0^{l_p} \frac{k_v}{u N_1} dx.$$

Для рассматриваемых параметров потока длина поглощения меняется в пределах $L_{\nu}=778-1507\,\mathrm{cm}$. Конкретный анализ проводился при длине зоны облучения $l_p=10\,\mathrm{cm}$, т.е. заведомо $l_p\ll L_{\nu}$. В этом случае облучение потока перед носиком клина при небольших Y_e можно проводить путем многократного сканирования поперек потока лазерным пучком с радиусом $0.1-0.5\,\mathrm{cm}$ при небольшой интенсивности воздействующего излучения $I_0=0.5-5\,\mathrm{kW/cm^2}$. Такой способ облучения дает возможность добиться требуемой величины E_s при воздействии даже относительно слабого источника лазерного излучения.

Рассмотрим сначала, как меняются параметры смеси в зоне воздействия лазерного излучения при различных значениях поглощенной молекулами О2 энергии. На рис. 2 представлено изменение массовых долей $C_i = \gamma_i \mu_i / \mu$ различных компонентов и температуры газа в зоне воздействия для смеси $H_2/O_2 = 2/1$. Коэффициент поглощения при x = 0 здесь равен $6.64 \cdot 10^{-2} \,\mathrm{m}^{-1}$, соответственно $L_{\nu}=15\,\mathrm{m}$. Видно, что при более высоком значении E_s концентрация молекул $O_2(b^1\Sigma_g^+)$ и $O_2(a^1\Delta_g)$ в смеси выше. Больше при этом и нагрев среды. Однако в рассматриваемом диапазоне параметров этот нагрев незначителен, и даже при $E_s = 0.05 \, \text{eV/(molecule O}_2)$ не превышает 27 К. При $T_0 = 600 \, {\rm K}$ в зоне облучения уже начинаются химические реакции, в которых образуются активные радикалы ОН и атомы О и Н. Эти реакции стимулированы образованием возбужденных молекул $O_2(b^1\Sigma_{\sigma}^+)$ и $O_2(a^1\Delta_g)$ в смеси [8]. При $E_s=0$ наработки H, O и ОН не происходит. К концу зоны облучения массовая доля $O_2(a^1\Delta_g)$ при $E_s = 0.05 \text{ eV/(molecule } O_2)$

Рис. 2. Изменение массовых долей компонентов и температуры газа при воздействии на сверхзвуковой поток смеси $H_2/O_2=2/1$ с $M_0=6$, $P_0=10^4$ Pa, $T_0=600$ K лазерного излучения с $\lambda_I=762$ nm, $E_s=0.01$ и 0.05 eV/(molecule O_2) (сплошные и пунктирные линии, соответственно).

 $4.32\cdot 10^{-11}$

 $6.67 \cdot 10^{-1}$

 $4.64 \cdot 10^{-12}$

 $4.08\cdot 10^{-11}$

 $1.11\cdot10^{-11}$

 $5.21 \cdot 10^{-18}$

 $5.84 \cdot 10^{-3}$

 $3.15 \cdot 10^{-4}$

 $5.22 \cdot 10^{-9}$

 $6.67 \cdot 10^{-1}$

 $7.77 \cdot 10^{-10}$

 $3.20\cdot10^{-9}$

 $3.25\cdot10^{-9}$

 $7.79 \cdot 10^{-15}$

 $9.58 \cdot 10^{-3}$

 $6.79 \cdot 10^{-4}$

T_0, K	500			600		
E_s , eV/(molecule O_2)	0.01	0.03	0.05	0.01	0.03	0.05
T, K P, Pa	505.7 1.01 · 10 ⁴	517.1 1.03 · 10 ⁴	528.4 1.06 · 10 ⁴	$605.5 \\ 1.01 \cdot 10^4$	616.5 1.03 · 10 ⁴	$627.5 \\ 1.05 \cdot 10^4$
$\gamma_{\mathrm{O}_{2}(X^{3}\Sigma_{g}^{-})}$ $\gamma_{\mathrm{O}_{3}}$	$2.08 \cdot 10^{-13} \\ 3.31 \cdot 10^{-1} \\ 7.86 \cdot 10^{-14}$	$2.45 \cdot 10^{-12} \\ 3.27 \cdot 10^{-1} \\ 2.74 \cdot 10^{-13}$	$9.02 \cdot 10^{-12} \\ 3.23 \cdot 10^{-1} \\ 5.40 \cdot 10^{-13}$	$2.39 \cdot 10^{-11} \\ 3.31 \cdot 10^{-1} \\ 2.57 \cdot 10^{-12}$	$2.53 \cdot 10^{-10} \\ 3.27 \cdot 10^{-1} \\ 8.40 \cdot 10^{-12}$	$8.48 \cdot 10^{-10} \\ 3.23 \cdot 10^{-1} \\ 1.54 \cdot 10^{-11}$

 $9.67\cdot10^{-11}$

 $6.67 \cdot 10^{-1}$

 $1.30 \cdot 10^{-11}$

 $9.00\cdot10^{-11}$

 $2.85\cdot 10^{-11}$

 $1.47 \cdot 10^{-17}$

 $9.74 \cdot 10^{-3}$

 $5.14 \cdot 10^{-4}$

Таблица 1. Температура, давление и мольные доли компонентов смеси в конце зоны воздействия лазерного излучения с $\lambda_I = 762 \,\mathrm{nm} \,\,\mathrm{при} \,\, M_0 = 6$

достигает ~ 2.5% и становится больше, чем массовая доля $O_2(b^1\Sigma_g^+)$. Отметим, что молекулы $O_2(a^1\Delta_g)$ формируются вследствие тушения состояния $O_2(b^1\Sigma_g^+)$: $O_2(b^1\Sigma_g^+) + M = O_2(a^1\Delta_g) + M$. Этот процесс протекает существенно быстрее, чем аналогичный для $O_2(a^1\Delta_e)$: $O_2(a^1\Delta_g) + M = O_2(X^3\Sigma_g^-) + M$, где M — любая молекула смеси. Увеличение подведенной к газу энергии интенсифицирует все эти процессы. Естественно, что при этом увеличивается концентрация как электронно-возбужденных молекул О2, так и активных радикалов ОН и атомов О и Н в смеси. Это хорошо видно из табл. 1, где для разных E_s (0.01, $0.03, 0.05 \, \text{eV/(molecule O}_2)$) даны значения мольных долей различных компонентов смеси, температура и давление в конце зоны воздействия при $T_0 = 500$ и $600 \text{ K} (P_0 = 10^4 \text{ Pa}).$

 $1.09\cdot10^{-11}$

 $6.67 \cdot 10^{-1}$

 $8.82\cdot 10^{-13}$

 $1.04 \cdot 10^{-11}$

 $2.41\cdot10^{-12}$

 $1.05 \cdot 10^{-18}$

 $1.94 \cdot 10^{-3}$

 $1.07 \cdot 10^{-4}$

 $\gamma_{\rm H}$

 $\gamma_{\rm H_2}$

 γ oh

 $\gamma_{\rm HO_2}$

 $\gamma_{\rm H_2O}$

 $\gamma_{\rm H_2O_2}$

 $\gamma_{{\rm O}_2(a^1\Delta_g)}$

 $\gamma_{\mathcal{O}_2(b^1\Sigma_g^+)}$

Обтекание сверхзвуковым потоком горючей смеси клина приводит при определенных условиях к формированию сложной волновой структуры с детонационной волной. На рис. 3 приведены поля статического давления, реализующиеся в потоке стехиометрической водородно-кислородной смеси при различных значениях подведенной к газу энергии излучения. Видно, что во всех случаях воспламенение начинается за фронтом первичной наклонной ударной волны, центрированной на носике клина, у его поверхности.

Можно выделить три характерные области течения, размер которых при фиксированных параметрах потока зависит от величины подведенной к газу энергии излучения E_s : зона индукции, зона воспламенения смеси (она еще называется переходной областью) и зона детонационного горения. На рис. 3 и далее эти зоны обозначены соответственно цифрами 1, 2 и 3.

В зоне 1 газодинамические параметры потока за фронтом ударной волны не меняются. Длина этой зоны $L_{\rm ind}$ вдоль образующей клина может быть оценена из простого соотношения $L_{\text{ind}} = u_1 \tau_{\text{ind}}$, где u_1 — скорость газа за фронтом ударной волны, а au_{ind} — период индукции. Его величина может быть определена из расчетов неравновесных физико-химических процессов за

 $2.56\cdot 10^{-9}$

 $6.67\cdot 10^{-1}$

 $3.06\cdot10^{-10}$

 $1.60\cdot 10^{-9}$

 $1.42\cdot 10^{-9}$

 $3.20 \cdot 10^{-15}$

 $5.74 \cdot 10^{-3}$

 $4.14\cdot 10^{-4}$

 $7.03\cdot10^{-10}$

 $6.67 \cdot 10^{-1}$

 $6.34\cdot 10^{-11}$

 $4.45\cdot 10^{-10}$

 $3.41 \cdot 10^{-10}$

 $7.35 \cdot 10^{-16}$

 $1.91 \cdot 10^{-3}$

 $1.40 \cdot 10^{-4}$

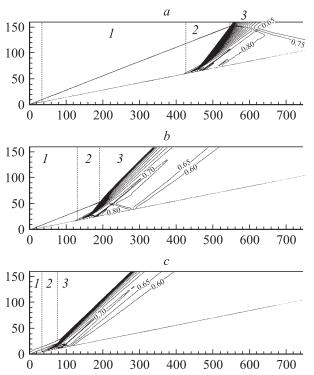


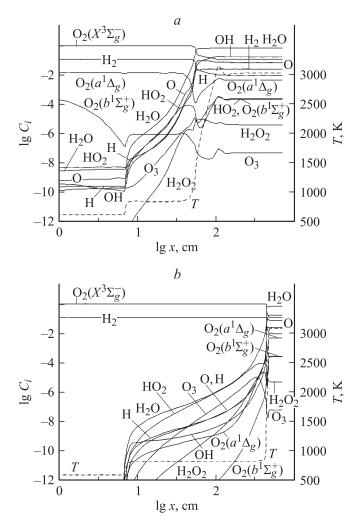
Рис. 3. Поля статического давления при обтекании клина с $\beta = 8^{\circ}$ сверхзвуковым потоком смеси $H_2/O_2 = 2/1$ (параметры те же, что для рис. 2) при воздействии лазерного излучения в приосевой области потока с $Y_e = 2$ cm при $E_s = 0$ (a); 0.01 (b) и $0.05 \,\mathrm{eV/(molecule \, O_2)}$ (c). Изолинии $P = \mathrm{const}$ даны в барах.

фронтом в одномерном приближении (для рассматриваемых параметров невозмущенного потока температура и давление газа за фронтом $T_1 = 824 \,\mathrm{K}$ и $P_1 = 28.2 \,\mathrm{kPa}$). В отсутствии возбуждения молекул О2 лазерным излучением значение $L_{\text{ind}} = 4.2 \,\text{m}$ достаточно велико даже для стехиометрической водородно-кислородной смеси. Непосредственно за зоной индукции располагается зона, в которой происходит воспламенение смеси и переход от дефлаграционного горения к детонационному. Именно здесь вследствие выделения химической энергии формируются волны сжатия, взаимодействие которых между собой приводит к формированию первичной детонационной волны, расположенной в зоне 2 между поверхностью клина и фронтом наклонной ударной волны. В случае отсутствия облучения при рассматриваемых параметрах длина этой зоны $L_t < L_{\text{ind}}$. Величина L_t зависит от P_1 , T_1 и характерных времен химических реакций, т.е. от состава смеси, и определяется как временем выделения химической энергии в процессе горения, так и временем формирования из волн сжатия первичной детонационной волны.

Взаимодействие первичной детонационной волны с фронтом наклонной ударной волны приводит в области 3 к образованию основной детонационной волны, которая имеет меньший угол наклона фронта к оси OX, чем первичная детонационная волна. Начало области 3 определяется координатой пересечения фронтов ударной и первичной детонационной волн.

Возбуждение молекул О2 лазерным излучением с длиной волны $\lambda_I=762\,\mathrm{nm}$ в состояние $b^1\Sigma_g^+$ даже в узкой зоне перед носиком клина ($Y_e = 2 \, \mathrm{cm}$) приводит к существенному сокращению как зоны индукции, так и переходной зоны (зоны воспламенения). Велична этого сокращения зависит от E_s , а следовательно, от концентрации возбужденных молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ в смеси. При $E_s=0.01\,\mathrm{eV/(molecule~O_2)}$ (эта величина E_s при рассматриваемых параметрах потока отвечает энергии излучения, выделившейся в единице объема газа, $E_a = 6.45 \cdot 10^{-4} \, \text{J/cm}^3$) длина зоны индукции уменьшается с 4.24 при отсутствии облучения до $L_{\text{ind}} = 1.3 \,\text{m}$. Длина переходной области L_t уменьшается при этом с 1.2 до 0.6 m, т. е. уменьшение $L_{\rm ind}$ при воздействии излучения больше, чем L_t . Тем не менее следует отметить, что возбуждение молекул O_2 в состояние $b^1\Sigma_{\mathfrak{g}}^+$ приводит к сокращению не только длины зоны индукции, но и зоны энерговыделения.

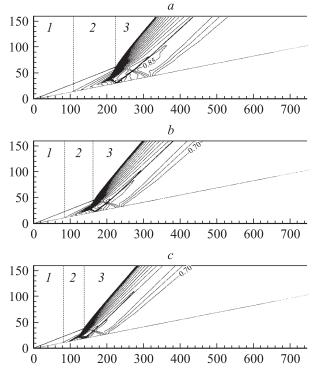
При увеличении E_s до $0.05\,\mathrm{eV/(molecule\ O_2)}$ ($E_a=3.23\cdot 10^{-3}\,\mathrm{J/cm^3}$) значение L_{ind} уменьшается до 0.45, а L_t до $0.3\,\mathrm{m}$. Расстояние от носика клина до начала области, занятой детонационной волной, L_D ($L_D=L_{\mathrm{ind}}+L_t$) уменьшается при этом с 5.45 (при отсутствии облучения) до $0.76\,\mathrm{m}$, т. е. более чем в 7 раз. Уменьшение длины зоны индукции и переходной зоны зависит также от поперечного размера облучаемой области потока Y_e . Это иллюстрирует данные расчета значений L_{ind} и L_D при различных значениях Y_e для E_s , приведенные в табл. 2. Видно, что для каждого E_s при заданных параметрах

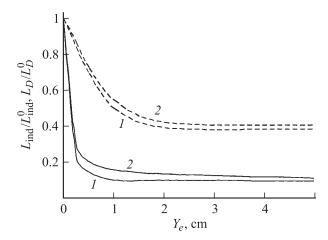

Таблица 2. Длина зоны индукции L_{ind} и длина зоны возникновения детонационной волны L_D в зависимости от размеров возбужденной зоны Y_e при $\beta=8^\circ$ и различных значениях E_s

	E_s , eV/(molecule O_2)								
Y_e , cm	0.01		0.03		0.05				
	$L_{\mathrm{ind}},\mathrm{cm}$	L_D , cm	$L_{\mathrm{ind}},\mathrm{cm}$	L_D , cm	$L_{\mathrm{ind}},\mathrm{cm}$	L_D , cm			
0	424.3	545.0	424.3	545.0	424.3	545.0			
0.25	262.4	358.2	149.1	216.0	98.9	163.0			
0.5	192.6	273.8	96.0	154.0	63.8	112.8			
1	146.9	213.8	64.3	117.0	45.3	88.7			
2	131.1	190.5	64.1	102.8	44.7	76.0			
5	124.5	174.2	64.0	89.1	43.5	62.9			

потока существует некоторое критическое значение Y_e^* , начиная с которого уменьшение поперечного размера облучаемой области потока приводит к резкому увеличению $L_{\rm ind}$ и L_D . При $T_0=600$ K, $P_0=10^4$ Pa, $M_0=6$ для $E_s=0.01$ eV/(molecule O_2) $Y_e^*=1.5$ cm, а для $E_s=0.05$ eV/(molecule O_2) $Y_e^*=0.75$ cm. Наоборот, при $Y_e>Y_e^*$ значения $L_{\rm ind}$ и L_D меняются мало. Это означает, что для обеспечения приемлемых значений L_D (~ 1 m) достаточно проводить облучение потока в очень узкой приосевой области. Например, при $E_s=0.05$ eV/(molecule O_2) даже при $Y_e^*=0.5$ cm можно стабилизировать детонационную волну на расстоянии всего 1.1 m от носика клина.

Ускорение процессов, приводящих к сокращению длины зоны индукции и зоны энерговыделения при лазерноиндуцированном возбуждении молекул О2, обусловлено интенсификацией цепных процессов в смеси H_2/O_2 . На рис. 4 показано изменение вдоль линии тока с $y = Y_e = 2 \, \text{cm}$ (эта линия ограничивает область облучения для вариантов, представленных на рис. 3) массовых концентраций компонентов смеси и температуры газа в случае воздействия излучения с $\lambda_I = 762\,\mathrm{nm},$ $E_s = 0.05 \,\mathrm{eV/(molecule O_2)}$ (a) и при его отсутствии (b). Из приведенных распределений видно, что присутствие в смеси после зоны облучения электронновозбужденных молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ существенно меняет динамику изменения концентраций активных атомов О, Н и радикалов ОН, являющихся носителями цепного механизма, за фронтом наклонной ударной волны, где повышение температуры до 824 К стимулирует протекание химических реакций.


При $E_s=0$ главными компонентами, образующимися в смеси за фронтом ударной волны, являются молекулы H_2O и HO_2 . Инициирование цепи здесь происходит вследствие протекания реакции $H_2+O_2=2OH$. Далее радикалы OH реагируют с H_2 : $OH+H_2=H_2O+H$. Атомы H участвуют в двух процессах. Один из них является реакцией разветвления цепи $O_2+H=OH+O$, а другой, $H+O_2+M=HO_2+M$, протекающий достаточно интенсивно при условиях, реализующихся за фронтом наклонной ударной волны, приводит к обрыву


Рис. 4. Изменение концентраций (массовых долей) компонентов и температуры смеси $H_2/O_2=2/1$ с $M_0=6$, $P_0=10^4$ Pa, $T_0=600$ K вдоль линии тока $y=Y_e=2$ cm при $E_s=0.05$ eV/(molecule O_2) (a) и при $E_s=0$ (b).

цепи. Именно благодаря этой реакции резко возрастает концентрация НО2 за фронтом. При этом происходит замедление цепного процесса, и длина зоны индукции на данной линии тока составляет ~ 4.24 m. При лазерноиндуцированном возбуждении молекул О2 перед носиком клина основными каналами инициирования цепи за фронтом ударной волны явлются следующие реакции: $H_2 + O_2(a^1\Delta_g) = 2OH$, $H_2 + O_2(a^1\Delta_g) = HO_2 + H$. Именно вследствие протекания этих реакций за фронтом резко увеличивается концентрация атомов Н и радикалов ОН (она становится сравнимой с концентрацией НО2, хотя перед фронтом концентрация молекул НО₂ была значительно больше). Развитие цепного процесса происходит в реакциях продолжения цепи: $H + O_2(a^1\Delta_g) = OH + O$, $H_2 + OH = H_2O + H$ и $H_2 + O = OH + H$. Эти реакции протекают значительно быстрее по сравнению со случаем отсутствия облучения [8], что и приводит к значительному сокращению длины зоны индукции (здесь $L_{\rm ind} \approx 45\,{\rm cm}$). Отметим, что для данной линии тока характерна достаточно низкая концентрация возбужденных молекул $O_2(b^1\Sigma_g^+)$ в смеси перед фронтом ударной волны $(C_{O_2(b^1\Sigma_g^+)}<10^{-6})$. Уменьшение $C_{O_2(b^1\Sigma_g^+)}$ в этой области обусловлено процессом тушения $O_2(b^1\Sigma_g^+)+M=O_2(a^1\Delta_g)+M$. В результате этого процесса происходит нагрев газа, и температура в зоне поглощения меняется при $E_s=0.05\,\mathrm{eV/(molecule\ O_2)}$ от 600 до 627 К. Однако этот нагрев не вносит значительного вклада в уменьшение L_{ind} . При $T_0=627\,\mathrm{K}$ в отсутствие возбужденных молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ в смеси длина зоны индукции на линии тока $y=Y_e=2\,\mathrm{cm}$ была бы равна $2.8\,\mathrm{m}$.

Важным параметром, влияющим на особенности формирования волновых структур при обтекании клина сверхзвуковым потоком горючей смеси, является температура невозмущенного потока. Понятно, что уменьшение T_0 приводит к увеличению $L_{\rm ind}$ и L_D , а повышение T_0 , наоборот, к уменьшению всех характерных длин. Чем меньше T_0 , тем большие значения E_s и Y_e требуются для стабилизации детонационной волны на приемлемых для практики расстояниях от носика клина $(L_D=1-1.5\,\mathrm{m})$. На рис. 5 показаны поля статического давления при обтекании клина сверхзвуковым потоком смеси $H_2/O_2 = 2/1$ с меньшей, чем в предыдущем случае, температурой газа, $T_0 = 500 \,\mathrm{K}$, при воздействии излучения с $\lambda_I = 762 \,\mathrm{nm}$, $E_s = 0.05 \,\mathrm{eV/(molecule \ O_2)}$ и $Y_e = 1, 2, 4 \,\mathrm{cm}$ (при $Y_e = 0$ $L_D = 315 \,\mathrm{m}$, что существенно больше масштаба рисунка). Из сравнения полей давления, представленных на рис. 3 и 5 ($E_s = 0.05 \,\text{eV/(molecule O}_2)$ и $Y_e = 2 \,\text{cm}$), видно, что относительно небольшое (всего на 16.5%)

Рис. 5. Поле статического давления при обтекании клина с $\beta=8^{\circ}$ потоком смеси $H_2/O_2=2/1$ с $M_0=6$, $P_0=10^4$ Pa, $T_0=500$ K при $Y_e=1$ (a), 2 (b) и 4 cm (c).

Рис. 6. Зависимость относительной длины зоны индукции $L_{\rm ind}/L_{\rm ind}^0$ (I) и длины зоны возникновения детонационной волны L_D/L_D^0 (2) при обтекании клина с $\beta=8^\circ$ потоком $H_2/O_2=2/1$ от поперечного размера зоны возбуждения Y_e в случае теплового воздействия лазерного излучения и при возбуждении молекул O_2 в состояние $b^1\Sigma_g^+$ (штриховые и сплошные линии).

уменьшение температуры газа приводит к изменению структуры течения. При $T_0 = 600 \,\mathrm{K}$ формирование первичной детонационной волны реализуется ближе к поверхности клина, чем при 500 К. В обоих случаях в точке образования первичной детонационной волны возникает волна сжатия, распространяющаяся от области выделения химической энергии к поверхности клина и в области 2 формируется λ-структура, состоящая из двух волн сжатия и первичной детонационной волны. Особенно ясно эта структура проявляется при $T_0 = 500 \, \mathrm{K}$. Здесь отраженная от поверхности клина волна сжатия приводит к формированию в области 3 двухфронтовой структуры, включающей детонационную и слабую ударную волны. Следует отметить, что при больших Y_e (> 4 cm) эта ударная волна очень быстро затухает, и в области 3, как и при $T_0 = 600 \,\mathrm{K}$, реализуется лишь одна детонационная волна. Как и ожидалось, даже небольшое снижения T_0 приводит к значительному увеличению L_{ind} , L_t и L_D . Например, при $E_s = 0.05 \,\text{eV/(molecule O_2)}$ и $Y_e = 2 \, \text{cm}$ уменьшение температуры с 600 до 500 K приводит к увеличению $L_{\rm ind}$ вдвое, а L_D — в 2.65 раза. Лишь при $Y_e=4\,\mathrm{cm}$ и $E_s=0.05\,\mathrm{eV/(molecule~O_2)}$ для потока $H_2/O_2 = 2/1$ с $M_0 = 6$, $P_0 = 10^4$ Pa, $T_0 = 500$ K удается стабилизировать детонационную волну на расстоянии < 1.4 m. При таких параметрах потока энергия излучения, поглощенная единицей объема газа, составляет $\sim 3.9 \cdot 10^{-3} \text{ J/cm}^3$.

Проведенные расчеты показывают, что предлагаемый метод инициирования детонационного горения в сверхзвуковом потоке, основанный на лазерно-индуцированном возбуждении молекул $O_2(X^3\Sigma_g^-)$ в состояние $b^1\Sigma_g^+$, намного эффективнее чисто теплового метода воздействия лазерного излучения, рассмотренного ранее [12,13], когда вся поглощенная энергия выделяется в поступательные степени свободы молекул. Это

иллюстрирует рис. 6, на котором показано изменение относительной длины зоны индукции $L_{
m ind}/L_{
m ind}^0$ и длины зоны формирования детонационной волны $\overline{L_D}/L_D^0$, где L_{ind}^0 и L_D^0 — длины соответствующих зон в отсутствие облучения, в зависимости от Y_e при лазерноиндуцированном возбуждении молекул $\mathrm{O}_2(X^3\Sigma_g^-)$ в состояние $b^1\Sigma_g^+$ и при тепловом воздействии лазерного излучения для одинаковой величины удельной поглощенной энергии $E_s = 0.05 \, \mathrm{eV/(molecule \ O_2)}$ на стехиометрическую смесь H_2/O_2 с $T_0 = 600 \,\mathrm{K}$ и $P_0 = 10^4 \,\mathrm{Pa}$ (при $E_s=0$ $L_{\rm ind}^0=4.24$ m, $L_D^0=5.45$ m). Видно, что при любых Y_e значения длины зоны индукции и зоны горения при тепловом воздействии лазерного излучения существенно больше, чем при возбуждении молекул кислорода излучением с $\lambda_I = 762 \, \mathrm{nm}$. Особенно это заметно при малых Y_e . Так, например, при $Y_e=1\,\mathrm{cm}$ величина L_{ind} при лазерно-индуцированном возбуждении молекул О2 в состояние $O_2(b^1\Sigma_g^+)$ в 4.6, а L_D — в 3.3 раза меньше, чем при простом нагреве среды лазерным излучением. Из представленных зависимостей также видно, что тепловое воздействие лазерного излучения при рассматриваемых параметрах среды и $E_s = 0.05\,\mathrm{eV/(molecule~O_2)}$ не позволяет ни при каких значениях Y_e стабилизировать детонационную волну на клине на расстоянии менее 2 т. В то же время в случае неравновесного возбуждения молекул О2 резонансным лазерным излучением даже при очень малой высоте области облучения (всего 0.25 ст) возможно инициировать детонационное горение в сверхзвуковом потоке смеси $H_2/O_2 = 2/1$ $(T_0 = 600 \,\mathrm{K} \,\mathrm{u} \,P_0 = 10^4 \,\mathrm{Pa}) \,\mathrm{u}$ при небольшой энергии, подведенной к газу, $E_s = 0.05 \, \text{eV/(molecule O}_2)$ на расстоянии 1.6 m от носика клина.

Уменьшение температуры газа приводит к еще более значительному отличию в величине L_D для этих двух рассматриваемых способов подвода энергии лазерного излучения к сверхзвуковому потоку горючей смеси.

Заключение

Возбуждение молекулярного кислорода в электронное состояние $O_2(b^1\Sigma_g^+)$ резонансным лазерным излучением с длиной волны 762 nm (переход $X^3\Sigma_{\sigma}^-, V' = 0 \to b^1\Sigma_{\sigma}^+,$ V'' = 0) позволяет реализовать детонационное горение при обтекании клина сверхзвуковым потоком водороднокислородной смеси на расстояниях, не превышающих 1.5 m, от его носика даже при небольшой подведенной к газу энергии излучения $E_s \le 0.05 \, \text{eV/(molecule O}_2)$ и температуре газа $T_0 = 500 - 600 \,\mathrm{K}$. В случае отсутствия облучения при таких параметрах потока не удается стабилизировать детонационную волну на расстояниях, меньших 5.5 m от носика клина. Эффекты сокращения длины зоны воспламенения смеси и зоны формирования детонационной волны обусловлены интенсификацией цепных реакций вследствие присутствия в реагирующей смеси электронно-возбужденных молекул $O_2(a^1\Delta_g)$, $O_2(b^1\Sigma_g^+)$ и формирования новых каналов образования активных атомов О, Н и радикалов ОН в

реакциях с участием этих молекул. Оказалось, что для стабилизации детонационной волны в сверхзвуковом потоке над поверхностью клина на небольших расстояниях от зоны воздействия излучения ($L_D < 1.5 \,\mathrm{m}$) достаточно проводить облучение в узкой приосевой области потока с поперечным размером $Y_e = 0.5 - 1$ cm непосредственно перед носиком клина. Лазерно-индуцированное возбуждение молекул О2 намного (в несколько раз) эффективнее простого нагрева среды лазерным излучением для инициирования детонационного режима горения в сверхзвуковом потоке горючей смеси. Такой способ подвода энергии лазерного излучения к потоку позволяет даже при облучении небольшого объема газа достаточно слабым источником стабилизировать детонационную волну в сверхзвуковом потоке на приемлемых для реализации детонационного режима горения расстояниях.

Работа выполнена при финансовой поддержке Российского Фонда Фундаментальных Исследований (гранты 05-01-00355 и 05-02-16419), МНТЦ (проект № 2740) и INTAS (проект № 03-51-4736).

Список литературы

- [1] Chinitz W. On the use of shock-induced combustion in hypersonic engines. AIAA Paper. 1996. N 96–4536.
- [2] Li C., Kailasanath K., Oran E.S. // Combust. Flame. 1997. Vol. 108. N 1/2. P. 173–186.
- [3] Bezgin L., Canzhelo A., Gouskov O., Kopchenov V., Yarunov Yu. Some estimations of a possibility to utilize shock-induced combustion in propulsion systems. In Gaseous and Heterogeneous Detonations: Science to Applications / Ed. by G. Roy, S. Frolov, K. Kailasanath, N. Smirnov. Moscow: ENAS Publishers, 1999. P. 285–300.
- [4] *Старик А.М., Титова Н.С.* // Физика горения и взрыва. 2000. Т. 36. № 3. С. 31–38.
- [5] Figueira Da Silva L.F., Deshaies B. // Combust. Flame. 2000.Vol. 121. N 1/2. P. 152–166.
- [6] Varatharajan B., Williams F.A. // J. Propulsion and Power. 2002. Vol. 18. N 2. P. 344–351.
- [7] *Безгин Л.В., Копченов В.И., Старик А.М., Титова Н.С.* // Физика горения и взрыва. 2006. Т. 42. № 1. С. 78–86.
- [8] *Старик А.М., Титова Н.С.* // Кинетика и катализ. 2003. Т. 44. № 1. С. 35–46.
- [9] *Старик А.М., Титова Н.С.* // ЖТФ. 2004. Т. 74. Вып. 9. С. 15–32.
- [10] Козлов В.Е., Секундов А.Н., Смирнова И.П. // Изв. АН СССР. МЖГ. 1986. № 6. С. 38–44.
- [11] Bezgin L., Ganzhelo A., Gouskov O., Kopchenov V. Some numerical investigation results on shock-induced combustion. AIAA Paper. 1998. N 98–1513.
- [12] Fendell F., Mitchell J., McGregor R., Sheffield M. // J. Propulsion adn Power. 1993. Vol. 9. N 2. P. 182–190.
- [13] Trott W.M. // J. Appl. Phys. 1983. Vol. 54. N 1. P. 118–130.