03,04

Диэлектрический отклик тонких пленок (Ba,Sr)TiO₃ в терагерцевом и ИК-диапазонах

© Г.А. Командин 1 , В.М. Мухортов 2 , О.Е. Породинков 1 , И.Е. Спектор 1

1 Институт общей физики им. А.М. Прохорова РАН,

Москва. Россия

² Южный научный центр РАН,

Ростов-на-Дону, Россия

E-mail: oporodinkov@ran.gpi.ru

(Поступила в Редакцию 28 июня 2012 г.)

Выполнен анализ зависимостей спектров диэлектрического отклика от толщины пленок на основе твердых растворов (Ba,Sr)TiO₃ (BST), осажденных на подложки монокристаллического MgO. По моделям Лоренца и Лиддена—Сакса—Теллера установлено взаимное соответствие продольных LO- и поперечных ТО-частот оптических фононов. Впервые обнаружено гигантское LO-TO расщепление самого низкочастотного колебания и "инверсия" LO- и ТО-частот остальных фононов в ИК спектре пленок BST.

Работа выполнена при поддержке РФФИ в рамках проекта 12-02-00203-а.

1. Введение

Сегнетоэлектрические тонкие пленки на основе титаната бария-стронция в составе гетероструктур обладают высокой диэлектрической проницаемостью при малых диэлектрических потерях и токах утечки. Они слабо подвержены усталости и старению. Поэтому на протяжении по крайней мере полутора десятилетий, активно проводятся исследования их электродинамических характеристик с целью применения этих пленок в микроэлектронных устройствах [1–3].

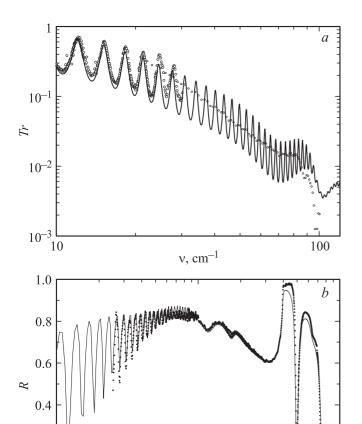
Тонкие пленки в составе гетероструктур существенно отличаются по электродинамическим параметрам от массивных образцов. Синтез гетероструктур обычно производится путем осаждения пленки на подложку при температурах несколько сотен градусов. При охлаждении в пленках возникают механические напряжения изза различия в параметрах решетки и коэффициентах теплового расширения пленки и подложки и из-за образования спонтанной поляризации в пленке после осаждения. Эти напряжения формируют в пленках такие фазовые состояния, которые не реализуются в объемных кристаллах и керамиках [4,5].

Наиболее прямые и полные данные об электродинамике тонких пленок могут быть получены из импедансометрических и спектроскопических измерений [6–8]. Измерения импеданса тонких пленок на низких частотах дают значения для диэлектрической проницаемости ниже, чем для массивных образцов. Конфигурация эксперимента обычно такова, что электрическое напряжение, приложенное к пленке, имеет две компоненты: нормальную и лежащую в плоскости пленки. Таким образом, регистрируется усредненное значение диэлектрической проницаемости. Погрешность вносит также "мертвый слой" между пленкой и электродами [9].

Длины волн излучения в терагерцевом (THz) и ИКдиапазонах существенно больше толщины пленки. В результате измерений получаются спектры, представляющие собой суперпозицию спектров пропускания или отражения тонкой пленки и подложки. Методы определения диэлектрического отклика по интегральным соотношениям Крамерса-Кронига для такой системы не применимы. Поэтому расчет диэлектрических параметров пленки выполняется с использованием модели многослойной среды. Определение дисперсионных параметров пленки осуществляется при фиксированных параметрах подложки.

Для адекватного численного моделирования критичным является предварительное точное определение диэлектрического отклика подложки. Необходимо учитывать наряду с однофононным вкладом также ангармонический вклад от разностных многофононных переходов и квазирелаксационные потери. Несмотря на малую величину диэлектрического вклада ангармонических потерь в подложке, они оказывают существенное влияние на точность определения диэлектрической функции пленки [7]. Это обусловлено большим отношением толщин подложки и пленки, которое достигает 10^3-10^5 .

В настоящей работе исследованы образцы гетероструктуры $Ba_{0.8}Sr_{0.2}TiO_3(BST)/MgO$ с наноразмерными пленками разной толщины. Методами терагерцевой ЛОВ-спектроскопии (ЛОВ — лампа обратной волны), инфракрасной Фурье-спектроскопии и дисперсионного анализа проведено изучение дипольных механизмов, обусловливающих поведение диэлектрической проницаемости в пленке, и определено, как зависят диэлектрические параметры от толщины пленки.


2. Экспериментальные результаты и обсуждение

Для исследований были изготовлены образцы гетероструктуры BST/MgO с пленками толщиной от 36

до $1500\,\mathrm{nm}$. Гетероэпитаксиальные пленки состава $\mathrm{Ba_{0.8}Sr_{0.2}TiO_3}$ осаждались на подложки монокристаллического MgO (001) среза методом высокочастотного распыления стехиометрических мишеней [10]. Этот метод обеспечивал слоевой рост пленок с атомарногладкой поверхностью.

Исходными данными для дисперсионного анализа являлись экспериментальные спектры пропускания в областях прозрачности образцов, измеренные на терагерцевом ЛОВ-спектрометре "Эпсилон" $(10-30\,\mathrm{cm}^{-1})$ и ИК-Фурье-спектрометре Bruker IFS-113v $(30-150\,\mathrm{cm}^{-1})$. В области полос дипольного поглощения $(35-1500\,\mathrm{cm}^{-1})$ дополнительно на ИК-спектрометре измерялись спектры отражения гетероструктур.

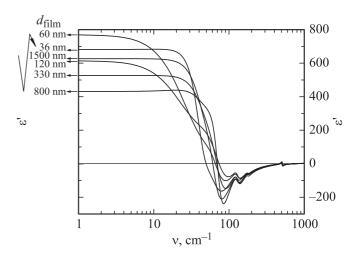

Методика моделирования экспериментальных спектров в расширенном спектральном диапазоне, включающем терагерцевую область, с привлечением данных по пропусканию и отражению подробно описана в нашей предыдущей работе [11]. Диэлектрические параметры подложки монокристаллического MgO представлены в [12].

Рис. 1. Типичные спектры пропускания (a) и отражения (b) гетероструктуры BST/MgO. Точки — эксперимент; сплошная линия — расчет по модели (1).

100

ν, cm⁻¹

Рис. 2. Зависимость действительной части диэлектрической проницаемости ε' от частоты ν для пленок разной толщины.

Типичные экспериментальные и модельные спектры пропускания и отражения гетероструктуры BST/MgO приведены на рис. 1. Качественный характер спектров аналогичен для всех исследованных пленок. Точками на рисунках обозначены экспериментальные данные по пропусканию (рис. 1,a) и отражению (рис. 1,b), сплошная линия — расчет. Модельные диэлектрические спектры получены в приближении трехпараметрической аддитивной модели гармонических осцилляторов Лоренца. В рамках этой модели каждая фононная мода характеризована набором из трех параметров — диэлектрического вклада в статическую диэлектрическую проницаемость $\Delta \varepsilon_j$, резонансной частоты (частоты поперечного оптического фонона) ν_i и затухания γ_i :

$$\varepsilon(\nu) = \varepsilon_{\infty} + \sum_{j=1}^{n} \frac{\Delta \varepsilon_{j} \nu_{j}^{2}}{\nu_{j}^{2} - \nu^{2} + i\nu \gamma_{j}}$$
 (1)

или после разделения на действительную

$$\varepsilon'(\nu) = \varepsilon_{\infty} + \sum_{i=1}^{n} \frac{\Delta \varepsilon_{i} \nu_{j}^{2} (\nu_{j}^{2} - \nu^{2})}{(\nu_{j}^{2} - \nu^{2})^{2} + \gamma_{j}^{2} \nu^{2}}$$
(2)

и мнимую части

1000

$$\varepsilon''(\nu) = \sum_{i=1}^{n} \frac{\Delta \varepsilon_{i} \nu_{j}^{2} \nu \gamma_{j}}{(\nu_{j}^{2} - \nu^{2})^{2} + \gamma_{j}^{2} \nu^{2}}.$$
 (3)

Параметры дисперсионного моделирования в приближении гармонического осциллятора Лоренца приведены в таблице в столбцах, объединенных под названием Lorentzian.

На рис. 2 представлена частотная зависимость действительной части диэлектрической проницаемости $\varepsilon'(\nu)$ для пленок BST разной толщины, рассчитанная по модели Лоренца. Расчет проведен до частоты 5 cm⁻¹, ниже которой дисперсия $\varepsilon'(\nu)$ практически отсутствует.

0.2

10

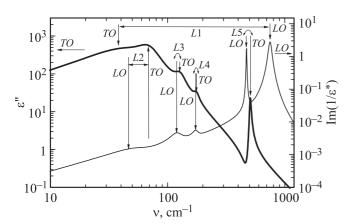
	Lorentzian			LST				
	$d_{ m film}=1500{ m nm}$							
Osc.	v, cm ⁻¹	$\Delta arepsilon$	γ , cm ⁻¹	$\nu_{\mathrm{TO}},~\mathrm{cm}^{-1}$	$\gamma_{\mathrm{TO}},~\mathrm{cm}^{-1}$	v_{LO}, cm^{-1}	$\gamma_{\rm LO},~{\rm cm}^{-1}$	$\Delta arepsilon$
<i>L</i> 1	46	408	57	46	50	738	49	380
L2	69	202	34	65	41	55.6	46	226
L3	127.7	14.2	31	130	28	124	29.4	12.7
L4	176.3	1.42	21	177.6	20	176	20	1.35
L5	507	0.72	16.3	511	16	472	15	0.71
	$d_{ m film}=800{ m nm}$							
	46.4	200	53	44.6	52	703	36	213
L2	69	237	29	73	34	54	57	197
	$d_{ m film}=330{ m nm}$							
<i>L</i> 1	45	270	49	45	49	742	48	280
L2	72.8	240	52	74	51	55	52	227
	$d_{ m film}=120{ m nm}$							
<i>L</i> 1	40	400	86	44	89	737	100	398
L2	72	190	58	70	46	57	60	187
	$d_{ m film}=60{ m nm}$							
L1	40	580	85	45	94	767	64	574
L2	72	170	62	69	49	60	56	176
	$d_{ m film}=36{ m nm}$							
L1	41	500	36	43	37	717	56	471
L2	72	160	57	64	49	55	36	192

Параметры дисперсионного моделирования диэлектрической проницаемости тонких пленок (Ba,Sr)TiO $_3$ $\varepsilon_\infty=4.45$

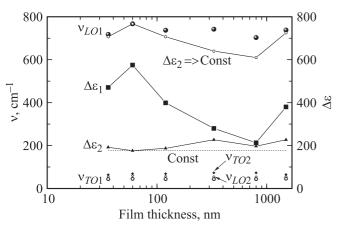
На низкочастотном краю рабочего диапазона диэлектрическая проницаемость немонотонно изменяется примерно в 2 раза с уменьшением толщины пленки. Из рис. 2 и таблицы видно, что для всех исследованных пленок диэлектрический отклик сформирован преимущественно двумя низкочастотными колебаниями L1 и L2. По мере варьирования толщины пленки диэлектрические вклады именно этих колебаний претерпевают наибольшие изменения. Изменения в параметрах остальных трех мод укладываются в рамки погрешностей. Поэтому в таблице все дисперсионные параметры приведены только для одной пленки толщиной 1500 nm.

В спектрах действительной части диэлектрической проницаемости тонких пленок BST есть одна особенность, на которую необходимо обратить внимание. В области частот от $50-70~{\rm cm}^{-1}$ и до $\sim 500~{\rm cm}^{-1}$ величины $\varepsilon'(\nu)$ принимают только отрицательные значения. Этот участок спектра сформирован откликом низкочастотной полосы, описанной в первом приближении парой осцилляторов. Такой вид спектра $\varepsilon'(\nu)$ позволяет сделать предположение о гигантском LO–TO-расщеплении низкочастотной полосы. Расчеты из первых принципов для перовскитов [13] показали, что поперечная мягкая мода связана с самым высокочастотным LO-колебанием. В этом случае остальные моды оказываются в области

LO-TO-расщепления низкочастотной полосы с гигантским диэлектрическим вкладом.


Для более полного анализа такого поведения диэлектрической проницаемости тонких пленок BST необходимо учитывать изменения в параметрах продольных мод.

По параметрам, полученным из дисперсионного моделирования, были рассчитаны спектры $\varepsilon''(\nu)$ и Im $1/(\varepsilon^*)$, представленные на рис. 3 для пленки BST толщиной 1500 nm. В случае слабого ангармонизма частоты максимумов в спектре диэлектрических потерь $\varepsilon''(\nu)$ близки к частотам ТО-фононов или полюсам функции диэлектрического отклика. При этом максимумы в спектре Im $1/(\varepsilon^*)$ соответствуют нулям функции диэлектрического отклика и соответственно частотам продольных оптических колебаний


$$\operatorname{Im}\!\left(\frac{1}{\varepsilon(\nu)}\right) = \frac{\Delta\varepsilon}{\varepsilon_{\infty}^2} \, \frac{\nu_{\text{TO}}^2 \gamma_{\text{TO}} \nu}{(\nu_{\text{LO}}^2 - \nu^2) + \gamma_{\text{TO}}^2 \nu^2}, \tag{4}$$

где индексы LO указывают на параметры продольной моды, а индексы TO — на параметры поперечной моды.

Таким образом, спектры $\varepsilon''(\nu)$ и Im $1/\varepsilon^*(\nu)$ показывают только частотное распределение поперечных ТО-и продольных LO-колебаний. Однако они не позволяют однозначно связать соответствующие друг другу

Рис. 3. Расчетные спектры $\varepsilon''(\nu)$ и ${\rm Im}\,1/(\varepsilon^*)$ для пленки толщиной 1500 nm. Показано LO–TO расщепление для мод $L1\dots L5$ (см. таблицу).

Рис. 4. Зависимости параметров дисперсионного моделирования для мод L1 и L2 от толщины пленки BST. Черные кружкии — ν_{LO1} (d); окружности — ν_{TO1} (d); малые окружности — ν_{LO1} (d) в предположении независимости диэлектрического вклада моды L2 $\Delta\varepsilon_2$ от толщины пленки; черные квадраты — $\Delta\varepsilon_1$ (d); черные треугольники — $\Delta\varepsilon_2$ (d); черные ромбы — ν_{TO2} (d); пустые ромбы — ν_{LO2} (d).

TO- и LO-колебания и получить величины LO-TO-расщеплений.

Для установления взаимосвязи ТО–LО-мод нами была применена четырехпараметрическая факторизованная модель дисперсии на основе соотношений Лиддена—Сакса—Теллера (LST) [14]

$$\varepsilon(\nu) = \varepsilon_{\infty} \prod_{j} \frac{\nu_{j\text{LO}}^{2} - \nu^{2} + i\nu\gamma_{j\text{LO}}}{\nu_{j\text{TO}}^{2} - \nu^{2} + i\nu\gamma_{j\text{TO}}}.$$
 (5)

Диэлектрический вклад моды не входит явно в это выражение, и может быть рассчитан с учетом продольных и поперечных частот всех остальных мод из соотношения

$$\Delta\varepsilon_{j} = \varepsilon_{\infty} \frac{\nu_{j\text{LO}}^{2} - \nu_{j\text{TO}}^{2}}{\nu_{j\text{TO}}^{2}} \prod_{k \neq j} \frac{\nu_{k\text{LO}}^{2} - \nu_{j\text{TO}}^{2}}{\nu_{k\text{TO}}^{2} - \nu_{j\text{TO}}^{2}}.$$
 (6)

При использовании большего числа подгоночных параметров в факторизованной модели дисперсии становится актуальной проблема произвола в их подборе. Поэтому определение дисперсионных параметров по модели (6) выполнено с учетом спектров $\varepsilon'(\nu)$ и $\varepsilon''(\nu)$ и параметров $\Delta \varepsilon_j$ и $\nu_{j\text{TO}}$, полученных из трехпараметрической модели (1). Критерием для определения частот продольных колебаний было равенство диэлектрических вкладов и частот поперечных колебаний для каждой моды. Погрешность в определении диэлектрических вкладов не превышала 10%, а в определении частот поперечных колебаний — 3-5%.

Зависимости параметров дисперсионного моделирования по (1) и (6) от толщины пленки приведены на рис. 4. Наибольшие изменения претерпевают параметры мод L1 и L2, поэтому на графике приведены только они. Значения диэлектрических вкладов моды L1, рассчитанные по модели LST (6), показаны черными квадратами, а для моды L2 — черными треугольниками.

Расчетные величины продольной и поперечной частот для моды L1 показаны черными кругами. Поперечная частота не имеет выраженной зависимости от толщины пленки и остается в пределах $\sim 45\,\mathrm{cm}^{-1}$. Для продольной частоты ν_{L1} на первый взгляд также не наблюдается заметных изменений, коррелирующих с поведением диэлектрического вклада первой моды L1. Однако надо учитывать то, что остальные моды находятся в области ее LO-TO-расщепления. С учетом того факта, что диэлектрический вклад второй моды L2 также имеет зависимость от частоты, можно ожидать влияния второй моды на продольную частоту первой. LO-TOрасщепление моды L2 показано на рисунке ромбами. В работе [15] показано, что происходит сдвиг продольной частоты моды, если в зоне ее LO-TO-расщепления находится более слабая вторая мода.

Для того чтобы проиллюстрировать такой сдвиг мы смоделировали спектр, в котором вторая мода не имела бы зависимости от толщины и была бы зафиксирована при значениях, полученных для толщины 60 nm. На рисунке это значение диэлектрического вклада отмечено пунктирной линией Const.

Полученные для этого случая результаты для $\nu_{\rm LO1}$ показаны окружностями. Видно, что изменение продольной частоты в этом приближении повторяет изменения диэлектрического вклада первой моды.

При изменении толщины пленки от 1500 до 800 nm диэлектрический вклад моды L1 уменьшается. В работе [16] этот эффект объяснен влиянием на диэлектрическую проницаемость деполяризующих полей на границах зерен и доменных стенках. В диапазоне толщин 800-60 nm, наоборот, наблюдается увеличение диэлектрического вклада. Это определяется ростом макроскопической поляризации пленки, вызванной деформацией кристаллической решетки из-за сжимающих или растягивающих напряжений на границе пленка—подложка. При дальнейшем уменьшении толщины $\Delta\varepsilon$ падает, что может быть связано со сменой растягивающих напряжений на сжимающие [17].

Уже отмечено, что все ИК-моды в спектре пленок BST оказались в области гигантского LO-ТО-расщепления низкочастотного колебания. В работе [15] показано, что в этом случае изменяется частотная последовательность соответствующих друг другу LO- и ТО-мод. В настоящее время нет устоявшегося названия данного явления. В работе [18] был введен термин "инвертированные фононы". В работах [15,18] рассмотрен случай, когда в области LO-TO-расщепления оказался один фонон с маленьким диэлектрическим вкладом. Для тонких пленок BST мы получили, что все ИК-фононы находятся в запрещенной области распространения электромагнитных волн, т.е. в области отрицательных ε' . Дисперсионные параметры инвертированных фононов показаны в таблице курсивом. Этот результат согласуется с расчетами из первых принципов [13] для монокристаллических перовскитов.

Для более полного понимания поведения электродинамического отклика в тонких пленках BST в условиях гигантского LO–TO-расшепления моды L1 необходимо детальное исследование температурной динамики мод L1 и L1 в условиях их взаимодействия.

3. Заключение

Проведенные исследования электродинамических свойств тонкопленочных гетероструктур BST/MgO в терагерцевом и инфракрасном диапазонах показали немонотонную зависимость диэлектрической проницаемости тонких пленок BST от толщины. Методом дисперсионного анализа определено, что в спектре диэлектрического отклика тонких пленок BST доминирует вклад, сформированный двумя взаимодействующими низкочастотными колебаниями L1 и L2. Изменение диэлектрического вклада самого низкочастотного колебания L1 коррелирует с изменением его продольной частоты. Обнаружено гигантское LO—TO-расщепление моды L1, в результате LO- и TO-частоты остальных ИК-мод инвертированы.

Авторы выражают благодарность А.А. Волкову и В.Б. Анзину за критические замечания и ценные советы при обсуждении результатов работы.

Список литературы

- [1] J.F. Scott. Science 315, 954 (2007).
- [2] А.С. Сигов, Е.Д. Мишина, В.М. Мухортов. ФТТ **52**, *4*, 709 (2010).
- [3] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolichnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer. J. Appl. Phys. 100, 051 606 (2006).
- [4] D. Nuzhnyy, J. Petzelt, S. Kamba, P. Kužel, C. Kadlec, V. Bovtun, M. Kempa, J. Schubert, C.M. Brooks, D.G. Schlom. Appl. Phys. Lett. 95, 232 902 (2009).
- [5] D. Nuzhnyy, J. Petzelt, S. Kamba, X. Marti, T. Čechal, C.M. Brooks, D.G. Schlom. J. Phys.: Cond. Matter 23, 045 901 (2011).

- [6] Ю.И. Головко, В.М. Мухортов, О.А. Бунина, И.Н. Захарченко, А.С. Анохин, В.Б. Широков, Ю.И. Юзюк. ФТТ 52, 1336 (2010).
- [7] Г.А. Командин, А.А. Волков, И.Е. Спектор, К.А. Воротилов, В.М. Мухортов. ФТТ 51, 7, 1280 (2009).
- [8] Yu.I. Yuzyuk, J.L. Sauvajol, P. Simon, V.L. Lorman, V.A. Alyoshin, I.N. Zakharchenko, E.V. Sviridov. J. Appl. Phys. 93, 12, 9930 (2003).
- [9] T. Ostapchuk, J. Petzelt, V. Železný, A. Pashkin, J. Pokorný, I. Drbohlav, R. Kužel, D. Rafaja, B.P. Gorshunov, M. Dressel, Ch. Ohly, S. Hoffmann-Eifert, R. Waser. Phys. Rev. B 66, 235 406 (2002).
- [10] А.С. Сигов, Е.Д. Мишина, В.М. Мухортов. ФТТ **52**, *4* (2010).
- [11] Г.А. Командин, В.И. Торгашев, А.А. Волков, О.Е. Породинков, И.Е. Спектор, В.М. Мухортов. ФГТ **52**, *9*, 1717 (2010).
- [12] Г.А. Командин, О.Е. Породинков, И.Е. Спектор, А.А. Волков. ФТТ **51**, *10*, 1928 (2009).
- [13] W. Zhong, R.D. King-Smith, David Vanderbilt. Phys. Rev. Lett. 72, 22, 3618 (1994).
- [14] R.J. Lyddane, R.G. Sachs, E. Teller. Phys. Rev. 59, 673 (1941).
- [15] J.-F. Baumard, F. Gervais. Phys. Rev. B 15, 4, 2316 (1977).
- [16] J. Petzelt, S. Kamba. New developments in advanced functional ceramics (2007). P. 387.
- [17] С.Н. Мигунов, А.А. Волков, Г.А. Командин, А.Н. Лобанов, Б.П. Горшунов, Ю.И. Головко, В.М. Мухортов, Ю.И. Юзюк. ЖТФ **78**, *11*, 99 (2008).
- [18] Е.А. Виноградов, Б.Н. Маврин, Н.Н. Новикова, В.А. Яковлев. УФН 179, 3, 313 (2009).