Effect of annealing temperature on the kinetics of aluminum-induced crystallization of amorphous silicon suboxide thin films
Merkulova I. E.1,2, Zamchiy A. O.
1,2, Lunev N. A.1, Konstantinov V. O.1, Baranov E. A.1
1Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia
Email: itpmerkulova@gmail.com, zamchiy@gmail.com, nanochirik9@gmail.com
In this work, the kinetics of aluminum-induced crystallization (AIC) of non-stoichiometric silicon oxide a-SiO0.25 was investigated for the case of annealing at temperatures of 370, 385 and 400oC, as a result of which thin films of polycrystalline silicon were obtained. It is shown that, at low annealing temperatures, the surface morphology of the crystalline material is represented by dendritic structures corresponding to the growth model with diffusion-limited aggregation. In addition, with increasing annealing temperature, the nucleation density increases from 3 to 53 mm-2. From the Arrhenius plot, the activation energy of the a-SiO0.25 AIC was obtained for the first time and appeared to be 3.7± 0.4 eV. Keywords: aluminum-induced crystallization, silicon suboxide thin films, polycrystalline silicon, activation energy.
- G. Maity, R. Singhal, S. Dubey, S. Ojha, P.K. Kulriya, S. Dhar, T. Som, D. Kanjilal, S.P. Patel, J. Non-Cryst. Solids, 523, 119628 (2019). DOI: 10.1016/j.jnoncrysol.2019.119628
- T. Nguyen, M. Hiraiwa, T. Koganezawa, S. Yasuno, S.-I. Kuroki, Jpn. J. Appl. Phys., 57, 031302 (2018). DOI: 10.7567/JJAP.57.031302
- K. Toko, T. Suemasu, J. Phys. D: Appl. Phys., 53, 373002 (2020). DOI: 10.1088/1361-6463/ab91ec
- J. Schneider, J. Klein, M. Muske, S. Gall, W. Fuhs, J. Non-Cryst. Solids, 338, 127 (2004). DOI: 10.1016/j.jnoncrysol.2004.02.036
- J.H. Yoon, Phys. Status Solidi RRL, 10, 668 (2016). DOI: 10.1002/pssr.201600198
- A.O. Zamchiy, E.A. Baranov, I.E. Merkulova, I.V. Korolkov, V.I. Vdovin, A.K. Gutakovskii, V.A. Volodin, Mater. Lett., 293, 129723 (2021). DOI: 10.1016/j.matlet.2021.129723
- A.O. Zamchiy, E.A. Baranov, I.E. Merkulova, S.Ya. Khmel, E.A. Maximovskiy, J. Non-Cryst. Solids, 518, 43 (2019). DOI: 10.1016/j.jnoncrysol.2019.05.015
- A.O. Zamchiy, E.A. Baranov, E.A. Maximovskiy, V.A. Volodin, V.I. Vdovin, A.K. Gutakovskii, I.V. Korolkov, Mater. Lett., 261, 127086 (2020). DOI: 10.1016/j.matlet.2019.127086
- W. Duan, F. Meng, J. Bian, J. Yu, L. Zhang, Z. Liu, Appl. Surf. Sci., 327, 37 (2015). DOI: 10.1016/j.apsusc.2014.11.098
- R. Numata, T. Kaoru, U. Noritaka, S. Takashi, Thin Solid Films, 557, 147 (2014). DOI: 10.1016/j.tsf.2013.08.044
- J. Chen, J. Suwardy, T. Subramani, W. Jevasuwan, T. Takei, K. Toko, T. Suemasu, N. Fukata, CrystEngComm, 19, 2305 (2017). DOI: 10.1039/C6CE02328B
- T.A. Witten, Jr., L.M. Sander, Phys. Rev. Lett., 47, 1400 (1981). DOI: 10.1103/PhysRevLett.47.1400
- L.M. Sander, Contemp. Phys., 41, 203 (2000). DOI: 10.1080/001075100409698
- S. Gall, M. Muske, I. Sieber, O. Nast, W. Fuhs, J. Non-Cryst. Solids, 299, 741 (2002). DOI: 10.1016/S0022-3093(01)01108-5
- A.O. Zamchiy, E.A. Baranov, S.Ya. Khmel, V.A. Volodin, V.I. Vdovin, A.K. Gutakovskii, Appl. Phys. A, 124, 646 (2018). DOI: 10.1007/s00339-018-2070-y
- C.J. Meechan, J.A. Brinkman, Phys. Rev., 103, 1193 (1956). DOI: 10.1103/PhysRev.103.1193
- P.I. Widenborg, A.G. Aberle, J. Cryst. Growth, 242, 270 (2002). DOI: 10.1016/S0022-0248(02)01388-X
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.