Formation of nanostructured films based on MoS2, WS2, MoO2 and their heterostructures
Loginov A. B. 1, Ismagilov R. R. 1, Bokova-Sirosh S. N. 2, Bozhev I. V. 1,3, Obraztsova E. D.2, Loginov B. A. 4, Obraztsov A. N.1,5
1Lomonosov Moscow State University, Moscow, Russia
2Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
3Quantum technologies centre M. V. Lomonosov Moscow State University, Moscow, Russia
4National Research University of Electronic Technology, Zelenograd, Moscow, Russia
5University of Eastern Finland, Department of Physics and Mathematics, Joensuu, Finland
Email: loginov.ab15@physics.msu.ru, ismagil@polly.phys.msu.ru, bokova.sirosh@gmail.com, bozhjev.ivan@physics.msu.ru, b-loginov@mail.ru

PDF
In this work thin film coatings based on WS2, MoS2, MoO2 and their composites were synthesized, morphological and structural properties of deposited coatings were studied. Chemical vapor deposition with heated MoO3, WO3, S powder as precursors was used. Dependence of structural and morphological properties, chemical composition of deposited films on parameters of synthesis was defined. Films of vertically aligned 10 nm thick plate crystals consisting both of pure MoO2 and MoO2 covered with thin MoS2 layer were obtained. Formation of polycrystalline films of regular triangular shaped WS2 and uniform continuous 20 nm thick WS2 films with covering area of 2x2 mm has also been observed. In this work we also report about synthesis of films consisting of regular triangular shaped WS2 crystals and MoS2 irregularly shaped crystals overlapping each other. Keywords: 2D materials, transition metal dichalcogenides, heterostructures, CVD, AFM.
  1. F. Giannazzo, G. Greco, F. Roccaforte, S.S. Sonde. Crystals, 8 (2), 2 (2018). DOI: 10.3390/cryst8020070
  2. P. Bharadwaj, L. Novotny. Opt. Photonics News, 26 (7), 24 (2015). DOI: 10.1364/OPN.26.7.000024
  3. M. Mittendorff, S. Winnerl, T.E. Murphy. Adv. Opt. Mater., 9 (3), 2001500 (2021). DOI: 10.1002/adom.202001500
  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Science, 306 (5696), 666 (2004). DOI: 10.1126/science.1102896
  5. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis. Nat. Rev. Mater., 2 (8), 17033 (2017). DOI: 10.1038/natrevmats.2017.33
  6. K.F. Mak, J. Shan. Nat. Photonics, 10 (4), 4 (2016). DOI: 10.1038/nphoton.2015.282
  7. E.C. Ahn. Npj 2D Mater. Appl., 4 (1), 1 (2020). DOI: 10.1038/s41699-020-0152-0
  8. K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro. Neto. Science, 353 (6298), aac9439 (2016). DOI: 10.1126/science.aac9439
  9. S. Xie, Y. Han, L. Huang, K. Kang, K.U. Lao, P. Poddar, C. Park, D.A. Muller, R.A. DiStasio Jr., J. Park. Science, 359 (6380), 1131 (2018). DOI: 10.1126/science.aao5360
  10. R. K. Chowdhury, R. Maiti, A. Ghorai, A. Midya, S.K. Ray. Nanoscale, 8 (27), 13429 (2016). DOI: 10.1039/C6NR01642A
  11. W. Chen, E.J.G. Santos, W. Zhu, E. Kaxiras, Z. Zhang. Nano Lett., 13 (2), 509 (2013). DOI: 10.1021/nl303909f
  12. E. Pu1, D. Liu, P. Ren, W. Zhou, D. Tang, B. Xiang, Y. Wang, J. Miao. AIP Adv., 7 (2), 025015 (2017). DOI: 10.1063/1.4977543
  13. Z. Wu, M. Ouyang, D. Wang, X. Liu. J. Alloys Compd., 832, 154970 (2020). DOI: 10.1016/j.jallcom.2020.154970
  14. M. Okada, A. Kutana, Y. Kureishi, Y. Kobayashi, Y. Saito, T. Saito, K. Watanabe, T. Taniguchi, S. Gupta, Y. Miyata, B.I. Yakobson, H. Shinohara, R. Kitaura. ACS Nano, 12 (3), 2498 (2018). DOI: 10.1021/acsnano.7b08253
  15. P.K. Sahoo, S. Memaran, Y. Xin, L. Balicas, H. R. Gutierrez. Nature, 553 (7686), 63 (2018). DOI: 10.1038/nature25155
  16. S. Behura, K.-C. Chang, Y. Wen, R. Debbarma, P. Nguyen, S. Che, S. Deng, M.R. Seacrist, V. Berry. IEEE Nanotechnol. Mag., 11 (2), 33 (2017). DOI: 10.1109/MNANO.2017.2676184
  17. S.A. Smagulova, P.V. Vinokurov, A.A. Semenova, E.I. Popova, F.D. Vasylieva, E.D. Obraztsova, P.V. Fedotov, I.V. Antonova. Semiconductors, 54 (4), 454 (2020), DOI: 10.1134/S1063782620040193
  18. A.B. Loginov, I.V. Bozhev, S.N. Bokova-Sirosh, E.D. Obraztsova, R.R. Ismagilov, B.A. Loginov, A.N. Obraztsov. Appl. Surf. Sci., 494, 1030 (2019). DOI: 10.1016/j.apsusc.2019.07.254
  19. J. Berkowitz, J. R. Marquart. J. Chem. Phys., 39 (2), 275 (1963). DOI: 10.1063/1.1734241
  20. R. Srivastava, L.L. Chaset. Solid State Communications, 11, 349 (1972)
  21. Y. Wang, S.-Q. Jiang, A.F. Goncharov, F.A. Gorelli, X.-J. Chen, D. Plav sienka, R. Martov nak, E. Tosatti, M. Santoro. J. Chem. Phys., 148 (1), 014503 (2018). DOI: 10.1063/1.5011333
  22. X. Chen, G. Liu, W. Zheng, W. Feng, W. Cao, W. Hu, P.A. Hu. Adv. Funct. Mater., 26 (46), 8537 (2016). DOI: 10.1002/adfm.201603674
  23. A. Berkdemir, H.R. Gutierrez, A.R. Botello-Mendez, N. Perea-Lopez, A.L. Eli as, C.-I. Chia, B. Wang, V.H. Crespi, F. Lopez-Uri as, J.-C. Charlier, H. Terrones, M. Terrones. Sci. Rep., 3 (1), 1 (2013). DOI: 10.1038/srep01755

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru