Study of the dynamics of heating anode units in a maskless nanolithograph based on an array of microfocus X-ray tubes
P. Yu. Glagolev1, G. D. Demin1, N. A. Djuzhev1, M. A. Makhiboroda1, N. A. Filippo1
1National Research University of Electronic Technology, Zelenograd, Moscow, Russia
Email: skirdovf@mail.ru
In this paper, we study the dynamics of heating the matrix of anode nodes membrane with a transmission-type target under the action of a field emission current generated in the electronic system of a maskless X-ray nanolithograph. The promising membrane materials that provide the most efficient heat removal from the matrix have been determined, among which diamond-like films have shown the best thermal stability. At the calculated power of soft X-ray radiation P_X=2.5 nW, scattered by a pixel with a size of 20 nm and an X-ray resist irradiation dose D=100 J/m2, the exposure time was 25 μs. It is shown that during the exposure of a 150 mm plate, a diamond-like anode membrane with a size of 300x300 elements heats up from 20 to 62oC, which is 15-25 times lower than the heating temperature of alternative anode materials (Cu, Fe, Ni, Si, Al). The technological route for the fabrication of the matrix of anode nodes is described, taking into account the proposed methods for optimizing its design, aimed at reducing the thermal effects of heating during X-ray nanolithography processes. The results obtained can be applied in the development of a thermostable system of microfocus X-ray tubes as part of a maskless X-ray nanolithograph. Keywords: X-ray nanolithography, microfocus X-ray tube, transmission-type target, matrix of anode nodes, electron bombardment heating, thermal expansion, Bosch-process.
- T. Matsui. J. Infrared Milli Terahz Waves, 38 (9), 1140 (2017). DOI: 10.1007/s10762-017-0387-9
- J. Feng, X. Li, J. Hu, J. Cai. J Electromagn. Eng Sci., 20 (1), 1 (2020). DOI: 10.26866/jees.2020.20.1.1
- B. Levush. IVEC (Busan, South Korea, 2019), p. 1--5. DOI: 10.1109/IVEC.2019.8745196
- S.A. Guerrera, A.I. Akinwande. Nanotech., 27, 295302 (2016). DOI: 10.1088/0957-4484/27/29/295302
- J.-W. Han, M.-L. Seol, D.-I. Moon, G. Hunter, M. Meyyappan. Nat. Electron., 2, 405 (2019). DOI: 10.1038/s41928-019- 0289-z
- M. Liu, T. Li, Y. Wang. J. Vac. Sci. Technol. B, 35, 031801 (2017). DOI: 10.1116/1.4979049
- Y. Huang, Z. Deng, W. Wang, C. Liang, J. She, S. Deng, N. Xu. Sci. Rep., 5, 10631 (2015). DOI: 10.1038/srep10631
- P. Zhang, Y.Y. Lau. J. Plasma Phys., 82, 595820505 (2016). DOI: 10.1017/S002237781600091X
- W.-T. Chang, H.-J. Hsu, P.-H. Pao. Micromachines, 10, 858 (2019). DOI: 10.3390/mi10120858
- J.-W. Han, D.-I. Moon, M. Meyyappan. Nano Lett., 17, 2146 (2017). DOI: 10.1021/acs.nanolett.6b04363
- J. Xu, Z. Gu, W. Yang, Q. Wang, X. Zhang, Nanoscale Res. Lett., 13, 311 (2018.) DOI: 10.1186/s11671-018-2736-6
- M. Liu, Y. Lei, Y. Yang, T. Li, Y. Wang. Proc. 2019 International Conference on Manipulation, Automation and Robotics at Small Scales (Helsinki, Finland, 2019), 1. DOI: 10.1109/marss.2019.8860991
- N.A. Djuzhev, G.D. Demin, T.A. Gryazneva, V.Yu. Kireev, D.V. Novikov. Proc. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (IEEE, Moscow, Russia, 2018) DOI: 10.1109/EIConRus.2018.8317498
- R. Menon, A. Patel, D. Gil, H.I. Smith. Mater. Today, 8 (2), 26 (2005)
- G.V. Belokopytov, Yu.V. Ryzhikova. Mikroelektronika, 40 (6), 453 (2011) (in Russian)
- U. Dauderstadt, P. Askebjer, P. Bjornangen, P. Durr, M. Friedrichs, M. List, D. Rudloff, J.-U. Schmidt, M. Muller, M. Wagner. Proc. SPIE, 7208, 720804 (2009)
- Electronic source. Available at: https://heidelberg-instruments.com/en/products/dwl-66.html
- N.A. Djuzhev, G.D. Demin, N.A. Filippov, I.D. Evsikov, P.Y. Glagolev, M.A. Makhiboroda, N.I. Chkhalo, N.N. Salashchenko, S.V. Filippov, A.G. Kolosko, E.O. Popov, V.A. Bespalov. Tech. Phys., 64 (12), 1742 (2019). DOI: 10.1134/S1063784219120053
- N.N. Salashchenko, N.I. Chkhalo, N.A. Djuzhev. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 12, 944 (2018). DOI: 10.1134/S1027451018050324
- G.D. Demin, N.A. Djuzhev, N.A. Filippov, P.Yu. Glagolev, I.D. Evsikov, N.N. Patyukov. J. Vac. Sci. Technol. B, 37, 022903 (2019). DOI: 10.1116/1.5068688
- P.Yu. Glagolev, G.D. Demin, G.I. Oreshkin, N.I. Chkhalo, N.A. Djuzhev. Tech. Phys., 65 (11), 1709 (2020). DOI: 10.1134/S1063784220110122
- V.P. Nazmov, E.F. Reznikova, A. Somogyi, J. Mohr, V. Saile. Optical Science and Technology, the SPIE 49th Annual Meeting (Denver, Colorado, United States, 2004), p. 235. DOI: 10.1117/12.562615
- G.D. Demin, N.A. Dyuzhev, M.A. Makhiboroda, A.Y. Lopatin, N.I. Chkhalo, A.E. Pestov, N.N. Salashchenko. International Conference on Micro- and Nano-Electronics. 2018. (Zvenigorod, Russian Federation: SPIE, 2019), p. 67. DOI: 10.1117/12.2522105
- A.Ya. Lopatin, D.E. Par'ev, A.E. Pestov, N.N. Salashchenko, N.I. Chkhalo, G.D. Demin, N.A. Dyuzhev, M.A. Makhiboroda, A.A. Kochetkov. J. Exp. Theor. Phys. 127 (6), 985 (2018). DOI: 10.1134/S1063776118100175
- N.A. Dyuzhev, G.D. Demin, T.A. Gryazneva, A.E. Pestov, N.N. Salashchenko, N.I. Chkhalo, F.A. Pudonin. Kratk. Soobshch. Fiz. FIAN, 12, 56 (2017)
- C. Montcalm, S. Bajt, P.B. Mirkarimi, E.A. Spiller, F.J. Weber, J.A. Folta. 23rd Annual International Symposium on Microlithography (Santa Clara, CA, United States 1998), p. 46. DOI: 10.1117/12.309600
- N.A. Dyuzhev, G.D. Demin, T.A. Gryazneva, A.E. Pestov, N.N. Salashchenko, N.I. Chkhalo, F.A. Pudonin. Bull. Lebedev Phys. Inst. 45 (1), 1 (2018). DOI: 10.3103/S1068335618010013
- COMSOL Multiphysics, COMSOL AB, Stockholm, Sweden, https://www.comsol.com/
- MATLAB, MathWorks, https://www.mathworks.com/pro- ducts/matlab
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.