The Investigation of the hydrodynamic drag of a slit microchannel with a textured wall
Lobasov A. S. 1,2, Minakov A. V.1,2
1Siberian Federal University, Krasnoyarsk, Russia
2Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: perpetuityrs@mail.ru

PDF
The results of numerical investigation of the hydrodynamic drag of a slit microchannel with a textured wall surface, as well as of the pressure drop in such a channel and the effective slip length on the wall for various Reynolds numbers, are presented. The channel height was 10 μm, and the length varied from 25 to 500 μm. It was found that the pressure drop in the textured microchannel was less than in a conventional one at any length. The dependences of the relative pressure drop, friction factor, and effective slip length on the Reynolds number were obtained for various channel lengths. A correlation that describes the dependence of the relative pressure drop on the Reynolds number for small channel lengths was proposed. The friction factor was described by a correlation expressed as 20 / Re. Keywords: microchannel, textured wall, wall slip, numerical simulation
  1. B. Bhushan, Y.C. Jung, K. Koch, Phil. Trans. Roy. Soc. A, 367 (1894), 1631 (2009). DOI: 10.1098/rsta.2009.0014
  2. G. Bhutani, K. Muralidhar, S. Khandekar, Interfac. Phenom. Heat Transfer, 1 (1), 29 (2013). DOI: 10.1615/InterfacPhenomHeatTransfer.2013007038
  3. H. Liu, L. Feng, J. Zhai, L. Jiang, D. Zhu, Langmuir, 20 (14), 5659 (2004). DOI: 10.1021/la036280o
  4. H.B. Eral, D.J.C.M. 't Mannetje, J.M. Oh, Colloid Polym. Sci., 291, 247 (2013). DOI: 10.1007/s00396-012-2796-6
  5. M.T.Z. Myint, G.L. Hornyak, J. Dutta, J. Colloid Interface Sci., 415, 32 (2014). DOI: 10.1016/j.jcis.2013.10.015
  6. A.I. Ageev, I.V. Golubkina, A.N. Osiptsov, Phys. Fluids, 30 (1), 012102 (2018). DOI: 10.1063/1.5009631
  7. A.I. Ageev, A.N. Osiptsov, J. Phys.: Conf. Ser., 1141, 012134 (2018). DOI: 10.1088/1742-6596/1141/1/012134
  8. A.E. Muslimov, A.Sh. Asvarov, N.S. Shabanov, V.M. Kanevsky, Pis'ma v ZhTF, 46 (19), 15 (2020) (in Russian). DOI: 10.21883/PJTF.2020.19.50037.18371
  9. A.I. Ageev, A.N. Osiptsov, Fluid Dyn., 54 (2), 205 (2019). DOI: 10.1134/S0015462819020010
  10. E.S. Asmolov, T.V. Nizkaya, O.I. Vinogradova, Phys. Rev. E, 98 (3), 033103 (2018). DOI: 10.1103/PhysRevE.98.033103
  11. A.S. Lobasov, A.V. Minakov, V.V. Kuznetsov, V.Y. Rudyak, A.A. Shebeleva, Chem. Eng. Process.: Process Intensific., 134, 105 (2018). DOI: 10.1016/j.cep.2018.10.012
  12. S. Patankar, Numerical heat transfer and fluid flow (Hemisphere publishing corporation, Washington-New York-London, 1980)
  13. L.G. Loitsyanskii, Mechanics of Liquids and Gases (Pergamon Press Ltd., London, 1966)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru