Romanov A.E.
1, Kolesnikova A. L.
1,2, Gutkin M. Yu.
1,2,3, Bougrov V. E.
11ITMO University, St. Petersburg, Russia
2Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
3Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: alexey.romanov@niuitmo.ru, anna.kolesnikova.physics@gmail.com, m.y.gutkin@gmail.com, vladislav.bougrov@itmo.ru
The elastic interaction of quantum disks (QDs) in a nanowire (NW), i. e., in a hybrid QD/NW structure with sharp heterointerfaces, is considered for the first time. Within the framework of the defect micromechanics approach, the energy of QD pair interaction is established and it is demonstrated that for QDs with a lattice misfit of the same sign, a zone of attraction to each other appears, depending on the ratio of the QD axial size to the NW radius. The discovered effect should be taken into account when choosing the modes of formation of hybrid QD/NW structures and in models explaining their properties. Keywords: nanowire (NW), quantum disk (QD), QD/NW hybrid structure, lattice mismatch, dilatation inclusion, strain energy.
- Ch. Jia, Zh. Lin, Y. Huang, X. Duan, Chem. Rev., 119, 9074 (2019). DOI: 10.1021/acs.chemrev.9b00164
- L.N. Quan, J. Kang, C.-Zh. Ning, P. Yang, Chem. Rev., 119, 9153 (2019). DOI: 10.1021/acs.chemrev.9b00240
- M. de la Mata, X. Zhou, F. Furtmayr, J. Teubert, S. Gradecak, M. Eickhoff, A. Fontcuberta i Morral, J. Arbiol, J. Mater. Chem. C, 1, 4300 (2013). DOI: 10.1039/c3tc30556b
- E. Uccelli, J. Arbiol, J.R. Morante, A. Fontcuberta i Morral, ACS Nano, 4, 5985 (2010). DOI: 10.1021/nn101604k
- A. Tribu, G. Sallen, T. Aichele, R. Andre, J.-P. Poizat, C. Bougerol, S. Tatarenko, K. Kheng, Nano Lett., 8, 4326 (2008). DOI: 10.1021/nl802160z
- V.N. Kats, V.P. Kochereshko, A.V. Platonov, T.V. Chizhova, G.E. Cirlin, A.D. Bouravleuv, Yu.B. Samsonenko, I.P. Soshnikov, E.V. Ubyivovk, J. Bleuse, H. Mariette, Semicond. Sci. Technol., 27, 015009 (2012). DOI: 10.1088/0268-1242/27/1/015009
- L. Leandro, J. Hastrup, R. Reznik, G. Cirlin, N. Akopian, NPJ Quant. Inf., 6, 93 (2020). DOI: 10.1038/s41534-020-00323-9
- M. Tchernycheva, G.E. Cirlin, G. Patriarche, L. Travers, V. Zwiller, U. Perinetti, J.-Ch. Harmand, Nano Lett., 7, 1500 (2007). DOI: 10.1021/nl070228l
- E. Sutter, P. Sutter, Chem. Mater., 31, 8174 (2019). DOI: 10.1021/acs.chemmater.9b03000
- A.D. Bolshakov, V.V. Fedorov, N.V. Sibirev, M.V. Fetisova, E.I. Moiseev, N.V. Kryzhanovskaya, O.Yu. Koval, E.V. Ubyivovk, A.M. Mozharov, G.E. Cirlin, I.S. Mukhin, Phys. Status Solidi RRL, 13, 1900350 (2019). DOI: 10.1002/pssr.201900350
- L.B. Freund, S. Suresh, Thin film materials: stress, defect formation and surface evolution (Cambridge University Press, 2009)
- T. Mura, Micromechanics of defects in solids (Martinus Nijhoff, Boston, 1987)
- A.E. Romanov, A.L. Kolesnikova, M.Yu. Gutkin, Int. J. Solids Struct., 213, 121 (2021). DOI: 10.1016/j.ijsolstr.2020.12.010
- F. Glas, Phys. Rev. B, 74, 121302(R) (2006). DOI: 10.1103/PhysRevB.74.121302
- A.E. Romanov, A.L. Kolesnikova, M.Yu. Gutkin, V.G. Dubrovskii, Scripta Mater., 176, 42 (2020). DOI: 10.1016/j.scriptamat.2019.09.036
- D.V. Beznasyuk, P. Stepanov, J.L. Rouviere, F. Glas, M. Verheijen, J. Claudon, M. Hocevar, Phys. Rev. Mater., 4, 074607 (2020). DOI: 10.1103/PhysRevMaterials.4.074607
- R.D. Mindlin, in Proc. First Midwestern Conf. on solid mechanics (Urbana, Illinois, 1953), p. 56
- S.A. Kukushkin, A.V. Osipov, R.S. Telyatnik, Phys. Solid State, 58, 971 (2016). DOI: 10.1134/S1063783416050140.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.