Amirov A.A.1,2, Tishin A. M.3, Pakhomov O.V.4
1Amirkhanov Institute of Physics, Daghestan Federal Research Center, Russian Academy of Sciences, Makhachkala, Russia
2Immanuel Kant Baltic Federal University, Kaliningrad, Russia
3Lomonosov Moscow State University, Moscow, Russia
4ITMO University, St. Petersburg, Russia
Email: amiroff_a@mail.ru, tishin@amtc.org
The terms "multicaloric effect" and "multicaloric" are relatively new concepts and combine the phenomena and materials associated with the coexistence of conventional caloric effects under the action of external forces of various nature (magnetic field, electric field, mechanical action). Nowadays, caloric materials remain in the focus of attention of researchers, and approaches based on the use of the multicaloric effect are considered as one of the ways to improve the efficiency of conventional solid-state cooling systems. Of particular interest from a fundamental point of view are the cross effects observed under the combined external stimulus, as well as the nature of the relationship between magnetic, electrical, thermophysical properties and structure under such actions. In this review, the theoretical foundations of the multicaloric effect are considered and an attempt is made to systematize multicaloric materials. Applied aspects of multicalorics are considered separately, and various experimental approaches to the study of their properties are presented. The presented review will be of interest to a wide range of specialists involved in the study of materials with caloric effects (magnetocaloric, electrocaloric, mechanocaloric), as well as those who are searching for new functional materials. Keywords: magnetocaloric effect, electrocaloric effect, elastocaloric effect, barocaloric effect, multicaloric effect, multiferroics, multicalorics, magnetoelectric composites.
- A. Kitanovski, J. Tuv sek, U. Tomc, U. Plaznik, M. Ov zbolt, A. Poredov s. Magnetocaloric energy conversion --- From theory to applications (2015). https://www.springer.com/gp/book/9783319087405
- T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch. Adv. Energy Mater. 9, 1970130 (2019). DOI: 10.1002/aenm.201970130
- A.M. Tishin, Y.I. Spichkin. The magnetocaloric effect and its applications. CRC Press, Taylor andd Francis Group (2016). DOI: 10.1887/0750309229
- A. Greco, C. Masselli. Magnetochemistry 6, (2020). DOI: 10.3390/magnetochemistry6040067
- C. Cazorla. Appl. Phys. Rev. 6, 041316 (2019). DOI: 10.1063/1.5113620
- E. Stern-Taulats, T. Castan, L. Manosa, A. Planes, N.D. Mathur, X. Moya. MRS Bull. 43, 295 (2018). DOI: 10.1557/mrs.2018.72
- A.A. Amirov. Chelyabinsk Phys. Math. J. 6, 78 (2021). DOI: 10.47475/2500-0101-2021-1610 6
- M.M. Vopson. Phys. B: Condens. Matter. 513, 103 (2017). DOI: 10.1016/j.physb.2017.02.034
- L. Manosa, D. Gonzalez-Alonso, A. Planes, E. Bonnot, M. Barrio, J.-L. Tamarit, S. Aksoy, M. Acet. Nature Mater. 9, 478 (2010). DOI: 10.1038/nmat2731
- A. Planes, T. Castan, A. Saxena. Phil. Mag. 94, 1893 (2014). DOI: 10.1080/14786435.2014.899438
- E. Stern-Taulats, T. Castan, A. Planes, L.H. Lewis, R. Barua, S. Pramanick, S. Majumdar, L. Manosa. Phys. Rev. B. 95, 104424 (2017). DOI: 10.1103/PhysRevB.95.104424
- M.M. Vopson. Solid State Commun. 152, 2067 (2012). DOI: 10.1016/j.ssc.2012.08.016
- A.S. Starkov, I.A. Starkov. ZhETF 146, 297 (2015) (in Russian). DOI: 10.7868/s0044451014080082
- I.N. Flyorov, E.A. Mikhalyova, M.V. Gorev, A.V. Kartashev. FTT 53, 421 (2015) (in Russian)
- A.P. Pyatakov, A.K. Zvezdin. Phys.-Usp. 55, 557 (2012). DOI: 10.3367/ufne.0182.201206b.0593
- A.K. Zvezdin, A.P. Pyatakov. Usp. Fiz. Nauk. 174, 465 (2004). DOI: 10.3367/UFNr.0174.200404n.0465
- N.A. Spaldin. MRS Bull. 42, 385 (2017). DOI: 10.1557/mrs.2017.86
- M.M. Vopson. J. Phys. D 46, 345304 (2013). DOI: 10.1088/0022-3727/46/34/345304
- A.A. Amirov, I.I. Makoed, D.M. Yusupov. Chelyabinsk Phys. Math. J. 5, 2, 140 (2020). DOI: 10.24411/2500-0101-2020-15201
- T. Gottschall, A. Gracia-Condal, M. Fries, A. Taubel, L. Pfeuffer, L. Manosa, A. Planes, K.P. Skokov, O. Gutfleisch. Nature Mater. 17, 929 (2018). DOI: 10.1038/s41563-018-0166-6
- Y. Liu, L.C. Phillips, R. Mattana, M. Bibes, A. Barthelemy, B. Dkhil. Nature Commun. 7, (2016). DOI: 10.1038/ncomms11614
- Q.B. Hu, J. Li, C.C. Wang, Z.J. Zhou, Q.Q. Cao, T.J. Zhou, D.H. Wang, Y.W. Du. Appl. Phys. Lett. 110 (2017). DOI: 10.1063/1.4984901
- H. Ursic, V. Bobnar, B. Malic, C. Filipic, M. Vrabelj, S. Drnovsek, Y. Jo, M. Wencka, Z. Kutnjak. Sci. Rep. 6 (2016). DOI: 10.1038/srep26629
- M. Balli, B. Roberge, P. Fournier, S. Jandl. Crystals 7 (2017). DOI: 10.3390/cryst7020044
- B. Sattibabu, A.K. Bhatnagar, K. Vinod, A. Mani. Phys. B: Condens. Matter. 514, 37 (2017). DOI: 10.1016/j.physb.2017.03.024
- M. Balli, P. Fournier, S. Jandl, M.M. Gospodinov. J. Appl. Phys. 115, 173904 (2014). DOI: 10.1063/1.4874943
- K. Dey, A. Indra, S. Majumdar, S. Giri. J. Magn. Magn. Mater. 435, 15 (2017). DOI: 10.1016/j.jmmm.2017.03.068
- I.I. Makoed, A.A. Amirov, N.A. Liedienov, A.V. Pashchenko, K.I. Yanushkevich. Solid State Sci. 95, 105920 (2019). DOI: 10.1016/j.solidstatesciences.2019.06.009
- I.I. Makoed, A.A. Amirov, N.A. Liedienov, A.V. Pashchenko, K.I. Yanushkevich, D.V. Yakimchuk, E.Y. Kaniukov. J. Magn. Magn. Mater. 489, 165379 (2019). DOI: 10.1016/j.jmmm.2019.165379
- I.A. Starkov, A.S. Starkov. Int. J. Solids Struct. 100-101, 187 (2016). DOI: 10.1016/j.ijsolstr.2016.08.015
- B. Ramachandran, M.S.R. Rao. Appl. Phys. Lett. 95, 142505 (2009). DOI: 10.1063/1.3242411
- G.P. Zheng, S. Uddin, X. Zheng, J. Yang. J. Alloys Compd. 663, 249 (2016). DOI: 10.1016/j.jallcom.2015.12.056
- A. Edstrom, C. Ederer. Phys. Rev. Lett. 124, 167201 (2020). DOI: 10.1103/PhysRevLett.124.167201
- A. Zakharov. Fiz. Met. Metalloved. 24, 84 (1967)
- A.M. Aliev, A.B. Batdalov, L.N. Khanov, A.P. Kamantsev, V.V. Koledov, A.V. Mashirov, V.G. Shavrov, R.M. Grechishkin, A.R. Kaul, V. Sampath. Appl. Phys. Lett. 109, 202407 (2016). DOI: 10.1063/1.4968241
- S.A. Nikitin, G. Myalikgulyev, A.M. Tishin, M.P. Annaorazov, K.A. Asatryan, A.L. Tyurin. Phys. Lett. A 148, 363 (1990). DOI: 10.1016/0375-9601(90)90819-A
- E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.-L. Tamarit, S. Pramanick, S. Majumdar, C. Frontera, L. Manosa. Phys. Rev. B 89, 214105 (2014). DOI: 10.1103/PhysRevB.89.214105
- S. Nikitin, G. Myalikgulyev, M. Annaorazov, A.L. Tyurin, R.W. Myndyev, S.A. Akopyan. Phys. Lett. A 171, 234 (1992). DOI: 10.1016/0375-9601(92)90432-L
- A.A. Amirov, F. Cugini, A.P. Kamantsev, T. Gottschall, M. Solzi, A.M. Aliev, Y.I. Spichkin, V.V. Koledov, V.G. Shavrov. J. Appl. Phys. 127 (2020). DOI: 10.1063/5.0006355
- A. Gracia-Condal, T. Gottschall, L. Pfeuffer, O. Gutfleisch, A. Planes, L. Manosa. Appl. Phys. Rev. 7, 041406 (2020). DOI: 10.1063/5.0020755
- A. Chirkova, F. Bittner, K. Nenkov, N.V. Baranov, L. Schultz, K. Nielsch, T.G. Woodcock. Acta Mater. 131, 31 (2017). DOI: 10.1016/j.actamat.2017.04.005
- F. Albertini, J. Kamarad, Z. Arnold, L. Pareti, E. Villa, L. Righi. J. Magn. Magn. Mater. 316, 364 (2007). DOI: 10.1016/j.jmmm.2007.03.020
- E. Lovell, H.N. Bez, D.C. Boldrin, K.K. Nielsen, A. Smith, C.R.H. Bahl, L.F. Cohen. Phys. Status Solidi --- Rapid Res. Lett. 11, 1700143 (2017). DOI: 10.1002/pssr.201700143
- E. Stern-Taulats, P. Lloveras, M. Barrio, E. Defay, M. Egilmez, A. Planes, J.L. Tamarit, L. Manosa, N.D. Mathur, X. Moya. APL Mater. 4, 091102 (2016). DOI: 10.1063/1.4961598
- A. Chauhan, S. Patel, R. Vaish. Acta Mater. 89, 384 (2015). DOI: 10.1016/j.actamat.2015.01.070
- C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan. J. Appl. Phys. 103, 031101 (2008). DOI: 10.1063/1.2836410
- C. Binek, V. Burobina. Appl. Phys. Lett. 102, 031915 (2013). DOI: 10.1063/1.4788690
- I. Starkov, A. Amirov, L. Khanov, A. Starkov. Ferroelectrics 569, 222 (2020). DOI: 10.1080/00150193.2020.1822680
- E. Mikhaleva, I. Flerov, A. Kartashev, M. Gorev, A. Cherepakhin, K. Sablina, N. Mikhashenok, N. Volkov, A. Shabanov. J. Mater. Res. 28, 3322 (2013). DOI: 10.1557/jmr.2013.360
- E. Mikhaleva, E. Eremin, I. Flerov, A. Kartashev, K. Sablina, N. Mikhashenok. J. Mater. Res. 30, 278 (2014). DOI: 10.1557/jmr.2014.369
- J. Ma, J. Hu, Z. Li, C.-W. Nan. Adv. Mater. 23, 1062 (2011). DOI: 10.1002/adma.201003636
- A.A. Amirov, A.S. Starkov, I.A. Starkov, A.P. Kamantsev, V.V. Rodionov. Lett. Mater. 8, 353 (2018). DOI: 10.22226/2410-3535-2018-3-353-357
- A.A. Amirov, V.V. Rodionov, I.A. Starkov, A.S. Starkov, A.M. Aliev. J. Magn. Magn. Mater. 470, 77 (2019). DOI: 10.1016/j.jmmm.2018.02.064
- A.A. Amirov, I.A. Baraban, A.A. Grachev, A.P. Kamantsev, V.V. Rodionov, D.M. Yusupov, V.V. Rodionova, A.V. Sadovnikov. AIP Adv. 10, 025124 (2020). DOI: 10.1063/1.5130026
- A.A. Amirov, T. Gottschall, A.M. Chirkova, A.M. Aliev, N.V. Baranov, K.P. Skokov, O. Gutfleisch. J. Phys. D 54 (2021). DOI: 10.1088/1361-6463/ac25ae
- R. Zhao, H. Huang, W. He, H. Wang, H.M. Jafri, J. Wang, X. Ma. J. Alloys Compd. 806, 1491 (2019). DOI: 10.1016/j.jallcom.2019.07.291
- Y.Y. Gong, D.H. Wang, Q.Q. Cao, E.K. Liu, J. Liu, Y.W. Du. Adv. Mater. 27, 801 (2015). DOI: 10.1002/adma.201404725
- R.O. Cherifi, V. Ivanovskaya, L.C. Phillips, A. Zobelli, I.C. Infante, E. Jacquet, V. Garcia, S. Fusil, P.R. Briddon, N. Guiblin, A. Mougin, A.A. Unal, F. Kronast, S. Valencia, B. Dkhil, A. Barthelemy, M. Bibes. Nature Mater. 13, 345 (2014). DOI: 10.1038/nmat3870
- Q.B. Hu, J. Li, C.C. Wang, Z.J. Zhou, Q.Q. Cao, T.J. Zhou, D.H. Wang, Y.W. Du. Appl. Phys. Lett. 110, 222408 (2017). DOI: 10.1063/1.4984901
- T. Gottschall, E. Bykov, A. Gracia-Condal, B. Beckmann, A. Taubel, L. Pfeuffer, O. Gutfleisch, L. Manosa, A. Planes, Y. Skourski, J. Wosnitza. J. Appl. Phys. 127, 185107 (2020). DOI: 10.1063/5.0006079
- A. Czernuszewicz, J. Kaleta, D. Lewandowski. Energy Convers. Manag. 178, 335 (2018). DOI: 10.1016/j.enconman.2018.10.025
- H. Hou, P. Finkel, M. Staruch, J. Cui, I. Takeuchi. Nature Commun. 9, 4075 (2018). DOI: 10.1038/s41467-018-06626-y
- A.G. Olabi, A. Grunwald. Mater. Des. 29, 469 (2008). DOI: 10.1016/j.matdes.2006.12.016
- A.A. Bukharaev, A.K. Zvezdin, A.P. Pyatakov, Y.K. Fetisov. Usp. Fiz. Nauk 188, 1288 (2018). DOI: 10.3367/ufnr.2018.01.038279
- Yu.I. Golovin, A.O. Zhigachev, D.Yu. Golovin, S.L. Gribanovsky, A.V. Kabanov, N.L. Klyachko. Izv. RAN. Ser. fiz., 84, 988 (2020) (in Russian). DOI: 10.31857/s0367676520070108
- S.A. Nikitov, A.R. Safin, D.V. Kalyabin, A.V. Sadovnikov, E.N. Beginin, M. V. Logunov, M.A. Morozova, S.A. Odintsov, S.A. Osokin, A.Y. Sharaevskaya, Y.P. Sharaevsky. Usp. Fiz. Nauk 190 (2020). DOI: 10.3367/ufnr.2019.07.038609
- A. Fert. Usp. Fiz. Nauk 178, 1336 (2008). DOI: 10.3367/ufnr.0178.200812f.1336
- X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R.J. Paull, J.D. Clarkson, J. Kudrnovsky, I. Turek, J. Kunev s, D. Yi, J.H. Chu, C.T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, R. Ramesh. Nature Mater. 13, 367 (2014). DOI: 10.1038/nmat3861
- S.A. Odintsov, A.A. Amirov, A.P. Kamantsev, A.A. Grachev, V.V. Rodionova, A.V. Sadovnikov. IEEE Trans. Magn. (2021). DOI: 10.1109/TMAG.2021.3085402
- S.A. Odintsov, A.A. Amirov, A.A. Grachev, V.V. Rodionova, A.V. Sadovnikov. FTT 63, 1317 (2021) (in Russian). DOI: 10.21883/ftt.2021.09.51307.24h
- A.A. Grachev, O. V. Matveev, M. Mruczkiewicz, M.A. Morozova, E.N. Beginin, S.E. Sheshukova, A.V. Sadovnikov. Appl. Phys. Lett. 118, 262405 (2021). DOI: 10.1063/5.0051429
- X.Z. Chen, J.F. Feng, Z.C. Wang, J. Zhang, X.Y. Zhong, C. Song, L. Jin, B. Zhang, F. Li, M. Jiang, Y.Z. Tan, X.J. Zhou, G.Y. Shi, X.F. Zhou, X.D. Han, S.C. Mao, Y.H. Chen, X.F. Han, F. Pan. Nature Commun. 8 (2017). DOI: 10.1038/s41467-017-00290-4
- V.I. Zverev, A.P. Pyatakov, A.A. Shtil, A.M. Tishin. J. Magn. Magn. Mater. 459, 182 (2018). DOI: 10.1016/j.jmmm.2017.11.032
- A.M. Tishin, Y.I. Spichkin, V.I. Zverev, P.W. Egolf. Int. J. Refrig. 68, 177 (2016). DOI: 10.1016/j.ijrefrig.2016.04.020
- A.M. Tishin, J.A. Rochev, A.V. Gorelov. US patent 9,017,713,B2, priority from 13.10.2006 (2015)
- A.A. Amirov, D.M. Yusupov, E.K. Murliev, C.A. Gritsenko, A.M. Aliev, A.M. Tishin. Mater. Lett. 304, 130626 (2021) DOI: 10.1016/j.matlet.2021.130626
- M. Barbic, S.J. Dodd, H.D. Morris, N. Dilley, B. Marcheschi, A. Huston, T.D. Harris, A.P. Koretsky. Magn. Res. Med. 81, 2238 (2019). DOI: 10.1002/mrm.27615
- M. Barbic, S.J. Dodd, H. ElBidweihy, N.R. Dilley, B. Marcheschi, A.L. Huston, H.D. Morris, A.P. Koretsky. Magn. Res. Med. 85, 506 (2021). DOI: 10.1002/mrm.28400
- Y. Cao, Y. Yuan, Y. Shang, V.I. Zverev, R.R. Gimaev, R. Barua, R.L. Hadimani, L. Mei, G. Guo, H. Fu. J. Mater. Sci. 55, 13363 (2020). DOI: 10.1007/s10853-020-04921-y.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.