Mustafaeva S.N.1,2,3, Asadov M.M.1,2,3, Guseinova S.S.1,2,3, Dzhabarov A.I.1,2,3, Lukichev V.F.1,2,3
1Institute of Physics, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan
2Nagiev Institute of Catalysis and Inorganic Chemistry of Azerbaijan National Academy of Sciences, Baku, Azerbaijan
3Valiev Institute of Physics and Technology of RAS, Moscow, Russia
Email: solmust@gmail.com
The band structure, density of states, and electronic properties of a 32-atomic supercell of a semiconductor compound TlGaS2 containing neodymium are calculated. On the grown new single crystals of TlGaS2 : Nd3+ (0.3 mol% Nd2S3), experimental results on the physical properties have been obtained. The temperature (93-538 K) and frequency (5·104-3.5·107 Hz) dependences of the dc and ac conductivity and the frequency dispersion of the dielectric coefficients of TlGaS2 : Nd3+ single crystals have been studied. It was found that in TlGaS2 : Nd3+, in the entire studied frequency range, there are losses due to electrical conductivity, and the charge transfer has a hopping character. The parameters of localized states are estimated, such as the density of localized states near the Fermi level and their spread, the average hopping time and distance, and the concentration of deep traps responsible for the dc and ac conductivity in TlGaS2 : Nd3+. Keywords: DFT calculation, TlGaS2 supercell, neodymium doping, energy structure, density of states, dielectric properties, charge transfer, TlGaS2 : Nd3+ single crystal, direct and alternating current.
- S.N. Mustafaeva, V.A. Ramazanzade, M.M. Asadov. Mater. Chem. Phys. 40, 142 (1995). https://doi:10.1016/0254-0584(94)01463-q
- S.N. Mustafaeva, M.M. Asadov, S.B. Kyazimov, N.Z. Gasanov. Inorgan. Mater. 48, 1110 (2012). DOI: 10.1134/s0020168512090117
- S.N. Mustafaeva, M.M. Asadov, E.M. Kerimova, N.Z. Gasanov. Inorgan. Mater. 49, 1175 (2013). https://doi:10.1134/s0020168513120121
- V.G. Gurtovoy, A.U. Sheleg, V.A. Chumak, S.N. Mustafaeva, E.M. Kerimova. Vestn. Grodennskogo gos. un-ta im. Ya. Kupaly. Ser. 2. Matematika. Fizika. Informatika, vychislitelnaya tekhnika i upravleniye 186, 83 (2015) (in Russian)
- V.G. Gurtovoy, A.U. Sheleg, S.N. Mustafayeva, E.M. Kerimova. Izv. NAN Belarusi. Ser. fiz.-mat. nauk 2, 98 (2015) (in Russian)
- S.N. Mustafaeva, K.M. Guseinova, M.M. Asadov. Phys. Solid State 62, 1150 (2020). https://doi:10.1134/S1063783420070197
- R.E. Nikolaev, A.M. Chernovol, A.R. Tsygankova. Inorgan. Mater. 51, 88 (2015). https://doi:10.1134/S0020168515020132
- E.F. Westrum, R.G. Burriel, B. John, P.E. Palmer, B.J. Beaudry, W.A. Plautz. J. Chem. Physics 91, 4838 (1989). https://doi:10.1063/1.456722
- H. Yuan, J. Zhang, R. Yu, Q. Su. J. Rare Earths 27, 308 (2009). https://doi:10.1016/s1002-0721(08)60239-2
- C.M. Forster, W.B. White. Mater. Res. Bull. 41, 448 (2006). https://doi:10.1016/j.materresbull.2005.07.035
- S. Cwik, S.M.J. Beer, M. Schmidt, N.C. Gerhardt, T. Arcos, D. Rogalla, J. Web ing, I. Giner, M. Hofmann, G. Grundmeier, A.D. Wieck, A. Devi. Dalton Trans. 48, 2926--2938 (2019). https://doi:10.1039/c8dt04317e
- D. Sofich, S.G. Dorzhieva, O.D. Chimitova, B.G. Bazarov, Yu.L. Tushinova, Zh.G. Bazarova, R.Yu. Shendrik. Phys. Solid State 61, 844 (2019). https://doi:10.1134/S1063783419050342
- S.N. Mustafaeva, S.M. Asadov, E.M. Kerimova. Neorgan. materialy 54, 662 (2018) (in Russian). https://doi:10.1134/s0020168518070099 [S.N. Mustafaevaa, S.M. Asadov, E.M. Kerimova. Inorg. Mater. 54, 7, 627 (2018)]. https://doi:10.1134/S0020168518070099
- H. Yuan, M. Ohta, S. Hirai, T. Nishimura, K. Shimakage. J. Rare Earths 22, 759 (2004). https://doi.org/10.1016/S1002-0721(08)60239-2
- M. Ohta, S. Hirai, Z. Ma, T. Nishimura, Y. Uemura, K. Shimakage. J. Alloys Compd. 408--412, 551 (2006). https://doi:10.1016/j.jallcom.2004.12.071
- M. Ohta, H. Yuan, S. Hirai, Y. Uemura, K. Shimakage. J. Alloys Compd. 74, 112 (2004). https://doi:10.1016/j.jallcom.2003.11.081
- S.M. Asadov, S.N. Mustafaeva, V.F. Lukichev. Russ. Microelectron. 48, 263 (2020). https://doi.org/10.1134/S1063739720040022
- M.M. Asadov, S.N. Mustafaeva, S.S. Guseinova, V.F. Lukichev, D.B. Tagiev. Phys. Solid State 63, 797 (2021). https://doi.org/10.1134/S1063783421050036
- J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/physrevlett.77.3865
- J. Heyd, G.E. Scuseria, M. Ernzerhof. J. Chem. Phys. 118, 8207 (2003). https://doi.org/10.1063/1.1564060
- J. Hubbard. Proc. Roy. Soc. London A 276, 238 (1963). https://doi.org/10.1098/rspa.1963.0204
- S.M. Asadov, S.N. Mustafaeva. Phys. Solid State 60, 499 (2018). DOI: 10.1134/S1063783418030034
- G.E. Delgado, A.J. Mora, F.V. Perez, J. Gonzalez. Physica B: Condens. Matter 391, 385 (2007). https://doi:10.1016/j.physb.2006.10.030
- N. Sato, M. Odori, M. Skrobian, M. Saito, T. Fujino, N. Masuko. Shigen-to-Sozai 110, 869 (1994). https://doi.org/10.2473/shigentosozai.110.869
- N.F. Mott, E.A. Davis. Electronic Processes in Non-Crystalline Materials. OUP Oxford, 2012. 590 p. ISBN: 9780199645336
- B.I. Shklovskii, A.L. Efros. Electronic Properties of Doped Semiconductors. Springer, Berlin, Heidelberg (1984). 393 p. ISBN: 978-3-662-02403-4
- M. Pollak. Phil. Mag. 23, 519 (1971). https://doi.org/10.1080/14786437108216402
- V.V. Pasynkov, V.S. Sorokin. Materialy elektronnoy tekhniki. Vyssh. shk., M. (1986). 368 p. (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.