Physics of the Solid State
Volumes and Issues
Changing the Parameters of Vacancy Formation and Self-Diffusion in a Crystal with Temperature and Pressure
Magomedov M. N. 1
1Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru

PDF
An analytical method for calculating the parameters of the electroneutral vacancies formation and self-diffusion of atoms in a single-component crystal is proposed. The method is based on the 4-parameters pairwise Mie-Lennard-Jones interatomic interaction potential. The method allows calculating all the activation processes parameters: Gibbs energy, enthalpy, entropy and volume for both the vacancy formation process and the self-diffusion process. The method is applicable at any pressure (P) and temperature (T). The temperature dependencies of the activation processes parameters for gold are calculated from T=10 K to 1330 K along two isobars P=0 and 24 GPa. It is shown that at low temperatures, due to quantum regularities, activation parameters strongly depend on temperature, and the entropy of activation processes in this region has a negative value. In the high temperature region, the probability of vacancy formation and the self-diffusion coefficient pass into classical Arrhenius dependencies with a weakly temperature-dependent enthalpy and with a positive value of the activation process entropy. Good agreements were obtained with the estimates of activation parameters for gold known from the literature. The values of activation parameters at T=0 K were discussed. Keywords: vacancy, self-diffusion, interatomic potential, gold, state equation, thermal expansion.
  1. Y. Kraftmakher. Phys. Rep. 299, 2-3, 79 (1998). DOI: 10.1016/S0370-1573(97)00082-3
  2. J.R. Manning, Diffusion Kinetics for Atoms in Crystals. D. Van Nostrand Comp., Toronto (1968). 257 p
  3. B.S. Bokshtein, A.B. Yaroslavtsev. Diffuziya atomov i ionov v tverdykh telakh. Izd-vo MISiS, M. (2005). 362 p. (in Russian)
  4. P.A. Varotsos, K.D. Alexopoulos. Thermodynamics of point defects and their relation with bulk properties. Elsevier, Amsterdam, North Holland (2013). 489 p
  5. G. Neumann, C. Tuijn. Self-diffusion and impurity diffusion in pure metals: handbook of experimental data. Pergamon/Elsevier, Boston (2009). 349 p
  6. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 1, 253 (2014). DOI: 10.1103/RevModPhys.86.253
  7. H. Mehrer. The effect of pressure on diffusion. Defect and Diffusion Forum 129-130, 57 (1996). DOI: 10.4028/www.scientific.net/DDF.129-130.57
  8. N.P. Kobelev, V.A. Khonik. J. Exp. Theor. Phys. 126, 3, 340 (2018). DOI: 10.1134/S1063776118030032
  9. G. Smirnov. Phys. Rev. B 102, 18, 184110 (2020). DOI: 10.1103/PhysRevB.102.184110
  10. P.-W. Ma, S.L. Dudarev. Phys. Rev. Mater. 3, 6, 063601 (2019). DOI: 10.1103/physrevmaterials.3.063601
  11. M.N. Magomedov. Semiconductors 42, 10, 1133 (2008). DOI: 10.1134/S1063782608100011
  12. M.N. Magomedov, Study of Interatomic Interaction, Vacancy Formation and Self-Diffusion in Crystals. Fizmatlit, Moscow (2010)
  13. Handbook of Mathematical Functions / Eds M. Abramowitz, I. Stegun. National Bureau of Standards, N. Y. (1964). 1046 p. https://www.math.hkbu.edu.hk/support/aands/intro.htm
  14. R.P. Feynman, Statistical Mechanics. W.A. Benjamin Inc., Massachusetts (1972). 354 p
  15. A.G. Chirkov, A.G. Ponomarev, V.G. Chudinov. Tech. Phys. 49, 2, 203 (2004). DOI: 10.1134/1.1648956
  16. G.M. Poletaev, M.D. Starostenkov. Phys. Solid State 51, 4, 727 (2009). DOI: 10.1134/S106378340904012X
  17. M.N. Magomedov. Semiconductors 44, 3, 271 (2010). DOI: 10.1134/S1063782610030012
  18. E.A. Moelwyn-Hughes. Physical Chemistry. Pergamon Press, London (1961). 1333 p
  19. L.A. Girifalco. Statistical Physics of Materials. J. Wiley \& Sons Ltd, N. Y. (1973). 346 p
  20. M.N. Magomedov. Phys. Met. Metallography 114, 3, 207 (2013). DOI: 10.1134/S0031918X13030113
  21. M.N. Magomedov. J. Mol. Liquids 285, 106 (2019). DOI: 10.1016/j.molliq.2019.04.032
  22. M.N. Magomedov. Phys. Solid State 63, 7, 1111 (2021). DOI: 10.1134/S1063783421070167
  23. M.N. Magomedov. Tech. Phys. Lett. 28, 5, 430 (2002). DOI: 10.1134/1.1482758
  24. M.N. Magomedov. Tech. Phys. 58, 9, 1297 (2013). DOI: 10.1134/S106378421309020X
  25. M.N. Magomedov. Tech. Phys. 58, 12, 1789 (2013). DOI: 10.1134/S1063784213120153
  26. M.N. Magomedov. Phys. Solid State 63, 215 (2021). DOI: 10.1134/S1063783421020165
  27. M.N. Magomedov. Phys. Solid State 62, 7, 1126 (2020). DOI: 10.1134/S1063783420070136
  28. M.N. Magomedov. Phys. Solid State 63, 9, 1595 (2021). DOI: 10.1134/S1063783421090250
  29. M. Matsui. J. Phys.: Conf. Ser. 215, 1, 012197 (2010). DOI: 10.1088/1742-6596/215/1/012197
  30. W.B. Holzapfel, M. Hartwig, W. Sievers. J. Phys. Chem. Reference Data 30, 2, 515 (2001). DOI: 10.1063/1.1370170
  31. S.M. Collard, R.B. Mc Lellan. Acta Metallurgica Mater. 39, 12, 3143 (1991). DOI: 10.1016/0956-7151(91)90048-6
  32. T. Tsuchiya. J. Geophys. Res. 108, B10, 2462 (2003). DOI: 10.1029/2003JB002446
  33. M.G. Pamato, I.G. Wood, D.P. Dobson, S.A. Hunt, L. Vov cadlo. J. Appl. Crystallogr. 51, 2, 470 (2018). DOI: 10.1107/S1600576718002248
  34. S.M. Makin, A.H. Rowe, A.D. Leclaire. Proc. Phys. Soc. Section B 70, 6, 545 (1957). DOI: 10.1088/0370-1301/70/6/301
  35. H.M. Gilder, D. Lazarus. J. Phys. Chem. Solids 26, 12, 2081 (1965). DOI: 10.1016/0022- 3697(65)90250-7
  36. E.W. Hart. Acta Metallurgica 5, 10, 597 (1957). DOI: 10.1016/0001-6160(57)90127-x
  37. H.M. Morrison, V.L.S. Yuen. Canadian J. Physics 49, 21, 2704 (1971). DOI: 10.1139/p71-326
  38. W. Xing, P. Liu, X. Cheng, H. Niu, H. Ma, D. Li, Y. Li, X.-Q. Chen. Phys. Rev. B 90, 14, 144105 (2014). DOI: 10.1103/PhysRevB.90.144105
  39. B. Medasani, M. Haranczyk, A. Canning, M. Asta. Comput. Mater. Sci. 101, C, 96 (2015). DOI: 10.1016/j.commatsci.2015.01.018
  40. R.A. Konchakov, A.S. Makarov, A.S. Aronin, N.P. Kobelev, V.A. Khonik. J. Exp. Theor. Phys. Lett. 113, 5, 345 (2021). DOI: 10.1134/S0021364021050064
  41. P. Varotsos, K. Alexopoulos. Phys. Rev. B 15, 8, 4111 (1977). DOI: 10.1103/PhysRevB.15.4111
  42. W. Bollmann, N.F. Uvarov, E.F. Hairetdinov. Cryst. Res. Technol. 24, 4, 422 (1989). DOI: 10.1002/crat.2170240418
  43. R.H. Dickerson, R.C. Lowell, C.T. Tomizuka. Phys. Rev. 137, 2A, A613 (1965). DOI: 10.1103/physrev.137.a613
  44. R.M. Emrick. Phys. Rev. B 22, 8, 3563 (1980). DOI: 10.1103/PhysRevB.22.3563
  45. P. Varotsos, W. Ludwig, K. Alexopoulos. Phys. Rev. B 18, 6, 2683 (1978). DOI: 10.1103/PhysRevB.18.2683
  46. G.J. Ackland, G. Tichy, V. Vitek, M.W. Finnis. Phil. Mag. A56, 6, 735 (1987). DOI: 10.1080/01418618708204485
  47. P.A. Korzhavyi, I.A. Abrikosov, B. Johansson, A. Ruban, H.L. Skriver. Phys. Rev. B 59, 18, 11693 (1999). DOI: 10.1103/PhysRevB.59.11693
  48. P. Knorr, J. Jun, W. Lojkowski, C. Herzig. Phys. Rev. B 57, 1, 334 (1998). DOI: 10.1103/physrevb.57.334
  49. S. Mukherjee, R.E. Cohen, O. Gulseren. J. Phys.: Condens. Matter 15, 6, 855 (2003). DOI: 10.1088/0953-8984/15/6/312
  50. M. Senoo, H. Mii, I. Fujishiro, T. Takeuchi. Jpn J. Appl. Phys. 12, 10, 1621 (1973). DOI: 10.1143/JJAP.12.1621
  51. T.D. Cuong, A.D. Phan. Vacuum 179, 109444 (2020). DOI: 10.1016/j.vacuum.2020.109444
  52. M.N. Magomedov. Tech. Phys. Lett. 27, 9, 773 (2001). DOI: 10.1134/1.1407355
  53. A.F. Andreev, I.M. Lifshitz. Sov. J. Exp. Theor. Phys. 29, 6, 1107 (1969). DOI: 10.1070/PU1971v013n05ABEH004235
  54. A.F. Andreev. Prog. Low Temperature Phys. 8, 67 (1982). DOI: 10.1016/s0079-6417(08)60005-0
  55. M.N. Magomedov. Tech. Phys. Lett. 34, 5, 414 (2008). DOI: 10.1134/S1063785008050167
  56. P. Varotsos, K. Alexopoulos. J. Phys. C 12, 19, L761 (1979). DOI: 10.1088/0022-3719/12/19/004
  57. S.M. Heald, D.R. Baer, R.O. Simmons. Phys. Rev. B 30, 5, 2531 (1984). DOI: 10.1103/PhysRevB.30.2531
  58. P.R. Granfors, B.A. Fraass, R.O. Simmons. J. Low Temperature Phys. 67, 5/6, 353 (1987). DOI: 10.1007/BF00710349
  59. I. Iwasa, H. Suzuki. J. Low Temperature Phys. 62, 1/2, 1 (1986). DOI: 10.1007/BF00681316
  60. I. Iwasa. J. Phys. Soc. Jpn 56, 5, 1635 (1987). DOI: 10.1143/JPSJ.56.1635
  61. M.E.R. Bernier, J.H. Hetherington. Phys. Rev. B 39, 16, 11285 (1989). DOI: 10.1103/PhysRevB.39.11285
  62. M.I. Mendelev, B.S. Bokstein. Phil. Mag. 90, 5, 637 (2010). DOI: 10.1080/14786430903219020

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru