Water jet impingement onto a hot steel plate
Glazkov V.V.1, Duplyankin R.A.1, Ilyukhin A.A.1
1National Research University «Moscow Power Engineering Institute», Moscow, Russia
Email: freeze-8@mail.ru

PDF
The research studies the interaction between subcooled small diameter water jet and thick steel heater at different surface temperatures, liquid velocities and jet angles. Although the heater surface temperature exceeded the Leidenfrost temperature and reached 340oC, the liquid, according to visual observations, wetted the surface. Geometrical characteristics of the heater surface wetted area and jet deflection angles were measured. It was hypothesised that jet deflection from the surface, accompanied by finely dispersed drops generation, occurs when thermal boundary layer, which develops in the liquid near the heater surface, reaches the liquid's outer surface. The preliminary measurements seem to confirm the hypothesis Keywords: Free-surface jet, quenching, jet impingement boiling, liquid film, Leidenfrost temperature.
  1. C. Agarwal. Steel Research Int., 90 (1), 1800285 (2018). DOI: 10.1002/srin.201800285
  2. D.H. Wolf, F.P. Incropera, R. Viskanta. Adv. Heat Transfer, 23, 1 (1993). DOI: 10.1016/S0065-2717(08)70005-4
  3. N. Karwa, P. Stephan. Int. J. Heat Mass Transfer, 64, 1118 (2013). DOI: 10.1016/j.ijheatmasstransfer.2013.05.014
  4. H. Leocadio, C.W.M. van der Geld, J.C. Passos. Phys. Fluids, 30, 122102 (2018). DOI: 10.1063/1.5054870
  5. M. Akmal, A.M.T. Omar, M.S. Hamed. Int. J. Microstruct. Mater. Prop., 3 (4), 654 (2008). DOI: 10.1504/IJMMP.2008.022042
  6. D.E. Hall, F.P. Incropera, R. Viskanta. J. Heat Transfer, 123 (5), 901 (2001). DOI: 10.1115/1.1389061
  7. N. Hatta, J. Kokado, K. Hanasaki. Trans. Iron Steel Inst. Jpn., 23 (7), 555 (1983). DOI: 10.2355/isijinternational1966.23.555
  8. S.G. Lee, M. Kaviany, C. Kim, J. Lee. Int. J. Heat Mass Transfer, 113, 622 (2017). DOI: 10.1016/j.ijheatmasstransfer.2017.05.081
  9. A.V. Lykov. Teoriya teploprovodnosti (Vysshaya Shkola, M., 1967) (in Russian)
  10. F.B. Kenrick, C.S. Gilbert, K.L. Wismer. J. Phys. Chem., 28 (12), 1297 (1924). DOI: 10.1021/j150246a009
  11. J.H. Lienhard, N. Shamsundar, P.O. Biney, Nucl. Eng. Des., 95, 297 (1986). DOI: 10.1016/0029-5493(86)90056-7
  12. L.D. Landau, E.M. Lifshitz. Gidrodinamika. Teoreticheskaya fizika (Nauka. Gl. Red. Fiz.-Mat. Lit., M., 1986), vol. VI, 3rd ed. (in Russian)
  13. V.P. Skripov. Metastabil'naya zhidkost' (Nauka, M., 1972) (in Russian)
  14. S.S. Kutateladze, V.E. Nakoryakov. Teplomassoobmen i volny v gazodinamicheskikh sistemakh (Nauka, Novosibirsk, 1984) (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru