Electrodynamic model of combustion chamber using subcritical streamer discharge to ignite fuel mixture
Bulat P. V.1, Volkov K. N.2, Esakov I. I.3, Lavrov P.B.3, Ravaev A. A.3
1Baltic State Technical University "VOENMEKH" named after Marshal D. F. Ustinov, St. Petersburg, Russia
2Kingston University, London, Great Britain
3Moscow Radio Technical Institute, Russian Academy of Sciences, Moscow, Russia
Email: dsci@mail.ru

PDF
Various electrodynamic models of a combustion chamber, in which an initiated subcritical streamer discharge is used to ignite a combustible mixture, are considered. To localize the discharge in the working chamber, discharge initiators are used based on half-wave electromagnetic vibrators with resonant properties. The dependences of the structure of the electric fields that form the discharge on the geometric parameters of the discharge initiator are obtained on the basis of numerical calculations, and the issues of matching the chamber with the radiation generator are considered. Comparison of the calculation options for different positions of the initiator of the discharge in relation to the optical centreline of the camera. Possibilities for further enhancement of the field in the working zone at the poles of the microwave discharge initiator, which is required for the formation of discharges with a developed streamer structure at elevated gas pressures in the combustion chamber, are discussed. The ways of increasing the resulting electromagnetic field in the area of vibrators for the formation of discharges with a volumetric structure have been determined. Keywords: microwave radiation, streamer discharge, electrodynamic model, plasma combustion, combustion chamber.
  1. P.V. Bulat, I.I. Esakov, L.P. Grachev, K.N. Volkov, I.A. Volobuev. IEEE Tr. Plasma Sc., 49 (3), 1041 (2021). DOI: 10.1109/TPS.2021.3064286
  2. P.V. Bulat, K.N. Volkov, L.P. Grachev, I.I. Esakov, P.B. Lavrov, N.V. Prodan, P.S. Chernyshov. Tech. Phys. Lett., 47 (15), 51 (2021). DOI: 10.1134/S1063785021080058
  3. P.V. Bulat, K.N. Volkov, L.P. Grachev, I.I. Esakov, P.B. Lavrov. Tech. Phys., 66 (9), 1308 (2021). DOI: 10.1134/S1063784221090036
  4. P.V. Bulat, L.P. Grachev, I.I. Esakov, A.A. Ravaev, L.G. Severinov. Tech. Phys., 64 (7), 957 (2019). DOI: 10.1134/S1063784219070090
  5. V.M. Shibkov, A.A. Aleksandrov, V.A. Chernikov, A.P. Ershov, L.V. Shibkova. J. Propul. Power, 25 (1), 123 (2009). DOI: 10.2514/1.24803
  6. V.A. Vinogradov, D.V. Komratov, A.Yu. Chirkov. J. Phys. Conf. Ser., 1370, 012022 (2019). DOI:10.1088/1742-6596/1370/1/012022]
  7. A.F. Aleksandrov, A.A. Kuzovnikov, V.M. Shibkov, J. Engineer. Phys. Thermophys., 78, 187 (2005). DOI: 10.1007/BF00862338
  8. V.B. Avramenko, J. Engineer. Phys. Thermophys., 78, 187 (2005). DOI: 10.1007/s10891-005-0047-0
  9. S. Finnveden. J. Sound Vib., 312, 644 (2008). DOI: 10.1016/j.jsv.2007.11.020
  10. I.V. Kudryavtsev, O.B. Gotselyuk, E.S. Novikov, V.G. Demin. Tech. Phys., 62 (1), 101 (2017). DOI: 10.1134/S1063784217010133
  11. V. Lashkov, I. Mashek, V. Ivanov, Y. Kolesnichenko, M. Rivkin. AIAA Paper, 2008-1410 (2008). DOI: 10.2514/6.2008-1410
  12. V.A. Lashkov, A.G. Karpenko, R.S. Khoronzhuk, I.Ch. Mashek. Phys. Plasmas, 23, 052305 (2016). DOI: 10.1063/1.4949524
  13. A.I. Saifutdinov, E.V. Kustova, A.G. Karpenko, V.A. Lashkov. Plasma Phys. Rep., 45 (6), 602 (2019). DOI: 10.1134/S1063780X19050106
  14. V.G. Brovkin, P.V. Vedenin. J. Appl. Phys., 128, 113301 (2020). DOI: 10.1063/5.0016249
  15. A.I. Saifutdinov, E.V. Kustova. J. Appl. Phys., 129, 023301 (2021). DOI: doi.org/10.1063/5.0031020
  16. K.V. Khodataev. AIAA Paper, 2007-0431 (2007). DOI: 10.2514/6.2007-431
  17. L.P. Grachev, I.I. Esakov, P.B. Lavrov, A.A. Ravaev. Tech. Phys., 57 (2), 230 (2012). DOI: 10.1134/S1063784212020077
  18. I. Esakov, L. Grachev, K. Khodataev, A. Ravaev, N. Yurchenko, P. Vinogradsky, A. Zhdanov. AIAA Paper, 2009-0889 (2009). DOI: 10.2514/6.2009-889
  19. Y.A. Lebedev, A.V. Tatarinov, I.L. Epshtein. High Temperature, 49 (6), 775 (2011). DOI: 10.1134/S0018151X11060174
  20. Yu.A. Lebedev. Plasma Sourc. Sci. T., 24 (5), 053001 (2015). DOI: 10.1088/0963-0252/24/5/053001
  21. A. Starikovskiy, N. Aleksandrov. Prog. Energ. Combust. Sci., 39, 331 (2013). DOI: 10.1016/j.pecs.2012.05.003
  22. Y. Ju, W. Sun. Prog. Energ. Combust., 48, 21 (2015). DOI: 10.1016/j.pecs.2014.12.002
  23. I.I. Esakov, L.P. Grachev, A.A. Ravaev, I.A. Volobuev. Problems Regional Energetics, 3 (44), 65 (2019). DOI: 10.5281/zenodo.3562187

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru