Duration of runaway electron current pulses when applying voltage pulses with a subnanosecond rise time
Tarasenko V.F. 1,2, Beloplotov D.V. 1, Sorokin D.A. 1
1Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
2Tomsk State University, Tomsk, Russia
Email: VFT@loi.hcei.tsc.ru, rff.qep.bdim@gmail.com, SDmA-70@loi.hcei.tsc.ru

PDF
The conditions for obtaining runaway electron (RE) current pulses with a minimum duration at a subnanosecond breakdown of centimeter gaps filled with air at atmospheric pressure were studied. It is shown that the RE current pulse duration depends on many parameters, such as the cathode form, the magnitude of the interelectrode distance, the diameter of the diaphragm, which is part of the anode, as well as on the size of the receiving part of the collector. It has been established that the use of cathodes with an extended edge having a small radius of curvature, RE current pulses consisting of two peaks of picosecond duration can be recorded. Keywords: runaway electrons, beam current, picosecond pulse duration, subnanosecond breakdown.
  1. A. Shevelev, E. Khilkevitch, M. Iliasova, M. Nocente, G. Pautasso, G. Papp, A. Molin, S. Pandya, V. Plyusnin, L. Giacomelli, G. Gorini. Nucl. Fusion, 61 (11), 116024 (2021). http//doi.org/10.1088/1741-4326/ac2638
  2. R. Kwiatkowski, M. Rabinski, M. Sadowski, J. Zebrowski, P. Karpinski. Eur. Phys. J. Plus, 136 (10), 1 (2021). http//doi.org/10.1140/epjp/s13360-021-01844-8
  3. Y. Zhang, L. Hu, R. Zhou, M. Chen, Y. Chao, J. Zhang, P. Li. Fusion Eng. Des., 173, 112924 (2021). http//doi.org/10.1016/j.fusengdes.2021.112924
  4. J.R. Dwyer. Phys. Rev. D, 104 (4), 043012 (2021). http//doi.org/10.1103/PhysRevD.104.043012
  5. M. Heumesser, O. Chanrion, T. Neubert, H. Christian, K. Dimitriadou, F.G. Vazquez, A. Luque, F.P. Invernon, R. Blakeslee, N. O stgaard, V. Reglero. Geophys. Res. Lett., 48 (4), 2020GL090700 (2021). http//doi.org/10.1029/2020GL090700
  6. C. Maiorana, M. Marisaldi, M. Fullekrug, S. Soula, J. Lapierre, A. Mezentsev, C. Skeie, M. Heumesser, O. Chanrion, N. O stgaard, T. Neubert. J. Geophys. Res.-Atmos., 126 (18), e2020JD034432 (2021). http//doi.org/10.1029/2020JD034432
  7. E.V. Oreshkin, S.A. Barengol'ts, A.V. Oginov, V.I. Oreshkin, S.A. Chaikovskii, K.V. Shakov. Tech. Phys. Lett., 37 (6), 582 (2011)
  8. V. Tarasenko. Plasma Sources Sci. T., 29 (3), 034001 (2020). http//doi.org/10.1088/1361-6595/ab5c57
  9. N.M. Zubarev, V.Y. Kozhevnikov, A.V. Kozyrev, G.A. Mesyats, N.S. Semeniuk, K.A. Sharypov, S.A. Shunailov, M.I. Yalandin. Plasma Sourc. Sci. T., 29 (12), 125008 (2020). https://doi.org/10.1088/1361-6595/abc414
  10. J. Qiu, C. Zhang, Z. Liu, B. Huang, T. Shao. Plasma Sci. Technol., 23 (6), 064011 (2021). http//doi.org/10.1088/2058-6272/abf299
  11. N.Y. Babaeva, C. Zhang, J. Qiu, X. Hou, V.F. Tarasenko, T. Shao. Plasma Sources Sci. T., 26 (8), 085008 (2017). http//doi.org/10.1088/1361-6595/aa7bb0
  12. C. Kohn, O. Chanrion, K. Nishikawa, L. Babich, T. Neubert. Plasma Sources Sci. T., 29 (3), 035023 (2020). https://doi.org/10.1088/1361-6595/ab6e57
  13. D.A. Sorokin, D.V. Beloplotov, V.F. Tarasenko, E.Kh. Baksht. Appl. Phys. Lett., 118 (22), 224101 (2021). http//doi.org/10.1063/5.0052686
  14. D.V. Beloplotov, V.F. Tarasenko, V.A. Shklyaev, D.A. Sorokin. JETP Lett., 113 (2), 129 (2021). DOI: 10.1134/S0021364021020053
  15. N.M. Zubarev, G.A. Mesyats. JETP Lett., 113 (4), 259 (2021). DOI: 10.1134/S0021364021040123
  16. M.A. Gashkov, N.M. Zubarev, O.B. Zubareva, G.A. Mesyats, K.A. Sharypov, V.G. Shpak, C.A. Shunailov, M.I. Yalandin. JETP Lett., 113 (6), 370 (2021)
  17. D.V. Beloplotov, V.F. Tarasenko, V.A. Shklyaev, D.A. Sorokin. J. Phys. D Appl. Phys., 54 (30), 304001 (2021). http//doi.org/10.1088/1361-6463/abfddc
  18. G.A. Mesyats, E.A. Osipenko, K.A. Sharypov, V.G. Shpak, S.A. Shunailov, M.I. Yalandin, N.M. Zubarev. J. Phys. Conf. Ser., 2064 (1), 012003 (2021). http//doi:10.1088/1742-6596/2064/1/012003
  19. V.F. Tarasenko, D.A. Sorokin, D.V. Beloplotov, M.I. Lomaev, E.K. Baksht, A.G. Burachenko. J. Phys. Conf. Ser., 2064 (1), 012001 (2021). http//doi:10.1088/1742-6596/2064/1/012001
  20. D. Levko, S. Yatom, V. Vekselman, J.Z. Gleizer, V.T. Gurovich, Y.E. Krasik. J. Appl. Phys., 111 (1), 013304 (2012). http//doi.org/10.1063/1.3676198
  21. N.Y. Babaeva, G.V. Naidis, D.V. Tereshonok, E.E. Son. J. Phys. D Appl. Phys., 51, 434002 (2018). http//doi.org/10.1088/1361-6463/aada74
  22. S.Y. Belomyttsev, A.A. Grishkov, V.A. Shklyaev, V.V. Ryzhov. J. Appl. Phys., 123 (4), 043309 (2018). http//doi.org/10.1063/1.5008820
  23. L.V. Tarasova, L.N. Khudyakova, T.V. Loiko, V.A. Tsukerman. Sov. Phys. Tech. Phys., 19, 351 (1974)
  24. L.P. Babich. High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment, and Natural Phenomena (Futurepast, Arlington, 2003)
  25. L.P. Babich, T.V. Loiko. Sov. Phys. Tech. Phys., 30, 574 (1985)
  26. E.H. Baksht, A.G. Burachenko, V.Y. Kozhevnikov, A.V. Kozyrev, I.D. Kostyrya, V.F. Tarasenko. J. Phys. D Appl. Phys., 43, 305201 (2010). DOI: 10.1088/0022-3727/43/30/305201
  27. V.F. Tarasenko, E.Kh. Baksht, A.G. Burachenko. Russ. Phys. J., 58 (12), 1702 (2016). UDC 621.316.933.6
  28. G.A. Mesyats, M.I. Yalandin, N.M. Zubarev, A.G. Sadykova, K.A. Sharypov, V.G. Shpak, S.A. Shunailov, M.R. Ulmaskulov, O.V. Zubareva, A.V. Kozyrev, N.S. Semeniuk. Appl. Phys. Lett., 116 (6), 063501 (2020). http//doi.org/10.1063/1.5143486
  29. B.M. Kovaltchuk, G.A. Mesyats, V.G. Shpak. Proc. Pulse Power Conf. (Lubbock, USA, 1976), p. ID5
  30. V.F. Tarasenko, V.G. Shpak, S.A. Shunailov, M.I. Yalandin, V.M. Orlovskii, S.M. Alekseev. Tech. Phys. Lett., 29 (11), 879 (2003)
  31. S.B. Alekseev, V.M. Orlovskii, V.F. Tarasenko, A.N. Tkachev, S.I. Yakovlenko. Tech. Phys., 50 (12), 1623 (2005)
  32. V.F. Tarasenko, S.A. Shunailov, V.G. Shpak, I.D. Kostyrya, Laser Part. Beams, 23 (4), 545 (2005). http//doi.org/10.1017/S0263034605050731
  33. G.A. Mesyats, V.G. Shpak, S.A. Shunailov, M.I. Yalandin. Tech. Phys. Lett., 34 (2), 169 (2008). DOI: 10.1134/S1063785008020259
  34. V.F. Tarasenko, D.V. Rybka, A.G. Burachenko, M.I. Lomaev, E.V. Balzovsky. Rev. Sci. Instrum., 83, 086106 (2012). http//doi.org/10.1063/1.4746378
  35. V.F. Tarasenko, D.V. Rybka. High Voltage, 1, 43 (2016). DOI: 10.1049/hve.2016.0007
  36. V.M. Efanov, M.V. Efanov, A.V. Komashko, A.V. Kirilenko, P.M. Yarin, S.V. Zazoulin. Ultra-Wideband, Short Pulse Electromagnetics 9. Part 5 (Springer, Berlin, 2010)
  37. G.A. Askar'yan. Soviet J. Experiment. Theor. Phys. Lett., 1, 97 (1965)
  38. D.A. Sorokin, D.V. Beloplotov, A.A. Grishkov, V.A. Shklyaev, V.F. Tarasenko, S.Ya. Belomittsev, M.I. Lomaev. High-voltage nanosecond discharge in an inhomogeneous electric field and its properties. Series "Radiation. Beams. Plasma" (STT, Tomsk, 2020), v. 3
  39. V.F. Tarasenko, E.Kh. Baksht, A.G. Burachenko, I.D. Kostyrya, M.I. Lomaev, D.V. Rybka. Plasma Devices Oper., 16 (4), 267 (2008). http://dx.doi.org/10.1080/10519990802478847

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru