Sapphire surface layer structure and transmission in visible after sputtering in H2-N2 RF discharge
A.E. Gorodetsky1, L.A. Snigirev2, A.V. Markin1, V.L. Bukhovets1, T.V. Rybkina1, R.Kh. Zalavutdinov1, A.G. Razdobarin2, E.E. Mukhin2, A.M. Dmitriev2
1Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
2Ioffe Institute, St. Petersburg, Russia
Email: amarkin@mail.ru

PDF
Leucosapphire (c-LS) structure and transmission in visible after surface treatment in 90%H2-10%N2 RF discharge are studied. According to AFM, the number of scratches of the mechanically polished surface decreased significantly after removal of about a 300 nm layer (exposure time of 12 h) under unchanged rms of roughness. According to TEM, a two-layer structure formed in the near-surface region consists of an outer 10 nm amorphous layer followed by a crystalline layer of 40-50 nm with a high defect density. The c-LS transmission in the angle of 400-1000 nm either slightly increased or remained unchanged. The demonstrated transmission stability during exposure in 90%H2-10%N2 RF discharge allows us to consider the plasma sputtering as a promising technique for cleaning contaminated windows protecting first mirror of divertor Thomson scattering being developed for ITER divertor Keywords: Leucosapphire, RF discharge, hydrogen, nitrogen, AFM, TEM, surface layer structure, visible transmission.
  1. V.A. Krupin, L.A. Klyuchnikov, K.V. Korobov, A.R. Nemets, M.R. Nurgaliev, A.V. Gorbunov, N.N. Naumenko, V.I. Troyanov, S.N. Tugarinov, F.V. Fomin. VANT. Ser. termoyadernyy sintez, (in Russian), 37 (4), 60 (2014). DOI: 10.21517/0202-3822-2014-37-4-60-70)
  2. A. Litnovsky, V.S. Voitsenya, R. Reichle, M. Walsh, A.G. Razdobarin, A. Dmitriev, N.A. Babinov, L. Marot, L. Moser, R. Yan, M. Rubel, S. Moon, S.G. Oh, P. Shigin, A. Krimmer, V. Kotov, P. Mertens. Nucl. Fusion, 59 (6), 066029 (2019). DOI: 10.1088/1741-4326/ab1446FIP/1-4
  3. E.E. Mukhin, V.V. Semenov, A.G. Razdobarin, S.Yu. Tolstykov, M.M. Kochergin, G.S. Kurskiev, K.A. Podushnikova, S.V. Masyukevich, D.A. Kirilenko, A.A. Sinikova, A.E. Gorodetsky, V.L. Bukhovets, R.Kh. Zalavutdinov, A.P. Zakharov, I.I. Arkhipov, Yu.P. Khimich, D.B. Nikitin, V.N. Gorchkov, A.S. Smirnov, T.V. Chernoizumskaia, E.M. Khirkevitch, K.Yu. Volkov, P. Andrew. Nucl. Fusion, 52, 013017 (2012). DOI: 10.1088/0029-5515/52/1/013017
  4. ITER Technical basis //IAEA/ITER EDA/DS/24. IAEA. Vienna. 2002. 816 p. ITER 2.6. Plasma Diagnostic System in ITER. Technical Basis. G AO FDR 1 01-07-13 R1.0
  5. E.E. Mukhin, G.S. Kurskiev, A.V. Gorbunov, D.S. Samsonov, S.Yu. Tolstyakov, A.G. Razdobarin, N.A. Babinov, A.N. Bazhenov, I.M. Bukreev, A.M. Dmitriev, D.I. Elets, A.N. Koval, A.E. Litvinov, S.V. Masyukevich, V.A. Senitchenkov, V.A. Solovei, I.B. Tereschenko, L.A. Varshavchik, A.S. Kukushkin, I.A. Khodunov, M.G. Levashova, V.S. Lisitsa, K.Yu. Vukolov, E.B. Berik, P.V. Chernakov, Al.P. Chernakov, An.P. Chernakov, P.A. Zatilkin, N.S. Zhiltsov, D.D. Krivoruchko, A.V. Skrylev, A.N. Mokeev, P. Andrew, M. Kempenaars, G. Vayakis, M.J. Walsh. Nucl. Fusion, 59, 086052 (2019). DOI: 10.1088/1741-4326/ab/cd5
  6. A.G. Razdobarin, N.A. Babinov, A.N. Bazhenov, I.M. Bukreev, A.P. Chernakov, A.M. Dmitriev, D.A. Kirilenko, A.N. Koval, G.S. Kurskiev, S.V. Masyukevich, E.E. Mukhin, D.S. Samsonov, V.V. Semenov, A.A. Sitnikova, V.V. Solokha, S.Yu. Tolstyakov, V.L. Bukhovets, A.E. Gorodetsky, A.V. Markin, A.P. Zakharov, R.Kh. Zalavutdinov, N.S. Klimov, A.B. Putrik, A.D. Yaroshevskaya, P.V. Chernakov, F. Leipold, R. Reichle, C. Vorpahl. MPT/P5-40. The 26th Fusion Energy Conference (Kyoto, Japan, 2016)
  7. M.B. Smith, K.A. Schmid, F. Schmid, C.P. Khattak, J.C. Lambropoulos. Proc. SPIE, 3705 (1999). DOI: 10.1117/12.354611
  8. Synthetic Sapphire. [Electronic source] Available at: http://www.tydexoptics.com/materials1/for_transmission_ optics/synthetic_sapphire/, free. (date of application: 22.06.2002)
  9. S. Yamamoto, T. Shikama, V. Belyakov, E. Farnum, E. Hodgson, T. Nishitani, D. Orlinski, S. Zinkle, S. Kasai, P. Stott, K. Young, V. Zaveriaev, A. Costley, L. DeKock, C. Walker, G. Janeschitz. J. Nucl. Mater., 283-287, 60 (2000). PII: S0022-3115(00)00157-4
  10. K. Vukolov, A. Borisov, N. Deryabina, I. Orlovskiy. Fusion Eng. Des., 96-97, 177 (2015). DOI: 10.1016/j.fusengdes.2015.06.153
  11. K. Iwano, K. Yamanoi, Y. Iwasa, K. Mori, Y. Minami, R. Arita, T. Yamanaka, K. Fukuda, M. John, F. Empizo, K. Takano, T. Shimizu, M. Nakajima, M. Yoshimura, N. Sarukura, T. Norimatsu, M. Hangyo, H. Azechi, B.G. Singidas, R.V. Sarmago, M. Oya, Y. Ueda. AIP Adv., 6, 105108 (2016). DOI: 10.1063/1.4965927
  12. L. Casali, E. Fable, R. Dux, F. Ryter. ASDEX Upgrade Team. Phys. Plasmas, 5, 032506 (2018). DOI: 10.1063/1.5019913
  13. A. Kallenbach, M. Bernet, R. Dux, L. Casali, T. Eich, L. Giannone, A. Herrmann, R. McDermott, A. Mlynek, H.W. Muller, F. Reimold, J. Schweinzer, M. Sertoli, G. Tardini, W. Treutterer, E. Viezzer, R. Wenninger, M. Wischmeier. ASDEX Upgrade Team. Plasma Phys. Control. Fusion, 55, 124041 (2013). DOI: 10.1088/0741-3335/55/12/124041
  14. F. Schluck. Plasma Res. Express, 2, 015015 (2020). DOI: 10.1088/2516-1067/ab7c2e
  15. V.L. Bukhovets, A.E. Gorodetsky, R.Kh. Zalavutdinov, A.V. Markin, L.P. Kazansky, I.A. Arkhipushkin, A.P. Zakharov, A.M. Dmitriev, A.G. Razdobarin, E.E. Mukhin. Nucl. Mater. Energy, 12, 458 (2017). DOI: 10/1016/j.nme.2017.05.002
  16. E.R. Dobrovinskaya, L.A. Litvynov, V. Pishchik. Sapphire. Material, Manufacturing, Applications (Springer, 2009), 500 p
  17. S.P. Malyukov, Yu.V. Klunnikova. In: Nano- and Piezoelectric Technologies, Materials and Devices (Nova Science Publishers, 2013), p. 133-150
  18. J. Kim, Y.Ju. Park, D. Byun, E.K. Kim, E.K. Koh, W. Pard. J. Kor. Phys. Soc., 42 (2), S446 (2003)
  19. J.V. Naidich. Progr. Surf. Membr. Sci., 14, 353-483 (1981)
  20. S.V. Gavrish, V.V. Loginov, S.V. Puchinina. Uspekhi prikladnoi fiziki, 7 (5), 480 (2019) (in Russian)
  21. J. Sung, L. Zhang, Ch. Tian, Gl.A. Waychunaas, Y. Ron Shen. J. Am. Chem. Soc., 133, 3846 (2011). DOI: 10.1021/ja104042u
  22. A.V. Voloshin, E.F. Dolzhenkova, L.A. Litvinov. Sverkhtverdye materialy, 5, 62 (2015) (in Russian)
  23. C.J. Lasmier, L.G. Sepalla, K. Morris, M. Groth, J. Fenstermacher, S.L. Allen, E. Synakowski, J. Ortiz. Visible and Infrared Optical Design for the ITER Upter Ports (UCRL-TR-228629, 2007), 93 p
  24. P.V. Parphenyuk, A.A. Evtukh. Semicond. Phys. Quantum Electron. Optoelectron., 199 (1), 1 (2016). DOI: 10.15407/speqeo19.01001
  25. A.E. Gorodetskii, A.V. Markin, V.L. Bukhovets, V.I. Zolotarevskyii, R.Kh. Zalavutdinov, N.A. Babinov, A.M. Dmitriev, A.G. Razdobarin E.E. Mukhin. Tech. Phys., 66 (2), 288 (2021). DOI: 10.134/S1063784221020122
  26. T. Mitsunaga. The Rigaku J., 25 (1), 7 (2009)
  27. T. Jacobs, T. Junge, L. Pastewka. Surf. Topogr. Metrol. Properties, 5 (1), 013001 (2017). DOI: 10.1088/2051-672X/aa51f8
  28. F. Cuccureddu, S. Murphy, I.V. Shvets, M. Porcu, H.W. Zandbergen, N.S. Sidorov, S.I. Bozhko. Surf. Sci., 604 (15), 1294 (2010). DOI: 10.1016/j.sucs.2010.04.017
  29. J.P. Biersack, L. Haggmark. Nucl. Instrum. Meth., 174, 257 (1980)
  30. R.K. Krishnaswamy, J. Janzen. Polym. Test., 24 (6), 762 (2005). DOI: 10.1016/j.polymertesting.2005.03.010
  31. E. Centurioni. Appl. Opt., 44 (35), 7532 (2005). DOI: 10.1364/AO.44.007532
  32. I.H. Malitson. J. Opt. Soc. Am., 52 (12), 1377 (1962)
  33. C.K. Hwangbo, L.J. Ling, J.P. Lehan, H.A. Macleod, F. Saits. Appl. Opt., 28 (14), 2779 (1989). DOI: 10.1364/AO.28.002779
  34. H. Zhuo, F. Peng, L. Lin, Y. Qu, F. Lai. Thin Solid Films, 519, 2308 (2011). DOI: 10.1016/j.tsf2010.11.024

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru