Features of the penetration of elements of the cumulative jet into a steel barrier
V.I. Kolpakov1, I.R. Kagarmanov1,2, I.A. Semenov2
1Bauman Moscow State Technical University, Moscow, Russia
2NPO Bazalt, Moscow, Russia
Email: isk4344@yandex.ru

PDF
Based on numerical simulations carried out using numerical methods of continuum mechanics, the influence on the depth of craters, formed in steel barriers of various strengths, geometric and kinematic parameters of elongated cylindrical copper strikers, simulating elements of a cumulative jet, in the range from 0.3 to 8 km/s. For description the behavior of materials of the impactor and barrier, the model of a compressible elastic-plastic medium with a variable value of the yield strength. Determined that the classical hydrodynamic theory of the penetration of a cumulative jet into a barrier is not takes into account the effects of the inertial movement of the barrier after triggering separately taken element (aftereffect). The existence of three regimes is distinguished shock interaction-high-speed, when the elements behave like a liquid body, are worked out, but not inhibited; low speed, when the elements behave like solid body and are decelerated as a whole and intermediate, when the elements are decelerated and are deformed at the same time. It is shown that the braking mode of copper elements at high-speed impact on a steel armored barrier is realized at speeds smaller 0.8-1 km/s. It is shown that when interacting with an obstacle, high-speed fragmented cumulative jet, the total depth of armor penetration will be greater, than this is predicted by the classical hydrodynamic theory of penetration, and the more more, the higher the speed of the elements and the greater the distance between them on the one hand and less strength of the barrier on the other side. Keywords: High-velocity strike, elongated striker, cumulative jet, steel barrier, crater, inertial movement of the barrier, numerical modeling.
  1. Fizika vzryva, pod red. L.P. Orlenko (Fizmatlit, M., 2004), izd. 3, ispr. v 2 t., t. 2, 656 s. (in Russian)
  2. S.A. Kinelovskiy, Yu.A. Trishin. FGV, 16 (5), 26-40 (1980) (in Russian)
  3. Chastnye voprosy konechnoy ballistiki, V.A. Grigoryan, A.N. Beloborodko, N.S. Dorokhov [etc.]; under the editorship of V.A. Grigoryan (Izd-vo MGTU im. N.E. Baumana, M., 2006), 592 s. (in Russian)
  4. G.I. Kannel, S.V. Razorenov, A.V. Utkin, V.E. Fortov. Udarno-volnoviye yavleniya v kondensirovannykh sredakh (Janus-K, M., 1996), 408 s. (in Russian)
  5. Metody issledovaniya svoystv materialov pri intensivnylh dinamicheskikh nagruzkakh: Monografiya pod obsch. red. M.V. Zhernokletov (RFYaTs-VNIIEF, Sarov, 2005), 2 izd., dop. i ispr., 428 s. (in Russian)
  6. L.P. Orlenko, A.V. Babkin, V.I. Kolpakov. Zadachi prikladnoy gazodinamiki: Rezul'taty chislennogo rescheniya (MVTU im. N.E. Baumana, M., 1988), 104 s. (in Russian)
  7. I.I. Tomashevich. FGV, 23,(2), 97-101 (1987) (in Russian)
  8. W.P. Walters, W.J. Flis, P.C. Chou. Int. J. Impact Engineer., 7 (3), 307-325 (1988)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru