Spintronic properties of the interface between Si(111) and 3C-SiC(111) grown by the method of coordinated substitution of atoms
Kukushkin S. A.
1, Osipov A. V.
2, Osipova E. V.
21St. Petersburg State University, St. Petersburg, Russia
2Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
Email: sergey.a.kukushkin@gmail.com, andrey.v.osipov@gmail.com
The properties of the interface between Si(111) and 3C-SiC(111) grown by the method of coordinated substitution of atoms were studied by the density functional theory in spin-polarized approximation. The most favourable atomic configuration at the interface was found. It is shown that SiC faces Si with the carbon plane, and SiC separates 3 Si atoms out of 16 from the second layer of substrate atoms. As a result, the 3 Si atoms in the substrate each have 3 bonds instead of 4, and the 3 C atoms in the bottom layer of the SiC film also have 3 bonds. It is these atoms that have a magnetic moment due to the unpaired p-electrons. It was found that for the electron with spin "majority" this interface is an ordinary semiconductor, and for the electron with spin "minority" it is a two-dimensional ferromagnetic metal. Keywords: silicon carbide, ferromagnetic semi-metals, terahertz radiation, density functional theory, spintronics.
- T. Kimoto, J.A. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices and applications (Wiley-IEEE Press, Singapore, 2014), p. 75--180.
- N.T. Son, C.P. Anderson, A. Bourassa, K.C. Miao, Ch. Babin, M. Widmann, M. Niethammer, J.U. Hassan, N. Morioka, I.G. Ivanov, F. Kaiser, J. Wrachtrup, D.D. Awschalom, Appl. Phys. Lett., 116, 190501 (2020). DOI: 10.1063/5.0004454
- A. Boretti, Nat. Photon., 8, 88 (2014). DOI: 10.1038/nphoton.2013.375
- H.J. von Bardeleben, S.A. Zargaleh, J.L. Cantin, W.B. Gao, T. Biktagirov, U. Gerstmann, Phys. Rev. Mater., 3, 124605 (2019). DOI: 10.1103/PhysRevMaterials.3.124605
- S.A. Kukushkin, A.V. Osipov, J. Phys. D: Appl. Phys., 47, 313001 (2014). DOI: 10.1088/0022-3727/47/31/313001
- S.A. Kukushkin, A.V. Osipov, J. Phys. D: Appl. Phys., 50, 464006 (2017). DOI: 10.1088/1361-6463/aa8f69
- L.M. Sorokin, N.V. Veselov, M.P. Shcheglov, A.E. Kalmykov, A.A. Sitnikova, N.A. Feoktistov, A.V. Osipov, S.A. Kukushkin, Tech. Phys. Lett., 34, 992 (2008). DOI: 10.1134/S1063785008110278
- N.T. Bagraev, S.A. Kukushkin, A.V. Osipov, V.V. Romanov, L.E. Klyachkin, A.M. Malyarenko, V.S. Khromov, Semiconductors, 55, 137 (2021). DOI: 10.1134/S106378262102007X
- N.T. Bagraev, S.A. Kukushkin, A.V. Osipov, V.L. Ugolkov, Fiz. Tekh. Poluprovodn., 56 (7), 715 (2022) (in Russian). DOI: 10.21883/FTP.2022.07.52766.24
- T. Tsuneda, Density functional theory in quantum chemistry (Springer, Tokio, 2014), p. 65--124
- U. von Barth, L. Hedin, J. Phys. C, 5, 1629 (1972). DOI: 10.1088/0022-3719/5/13/012
- J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865
- J. Hafner, J. Comput. Chem., 29, 2044 (2008). DOI: 10.1002/jcc.21057
- F. Tran, P. Blaha, Phys. Rev. Lett., 102, 226401 (2009). DOI: 10.1103/PhysRevLett.102.226401
- J. Kudrnovsky, I. Turek, V. Drchal, F. Maca, J. Masek, P. Weinberger, P. Bruno, J. Supercond., 16, 119 (2003). DOI: 10.1023/A:1023257306608
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.