Electrical conductive and photoelectrical properties of heterostructures based on gallium and chromium oxides with corundum structure
Almaev D. A.1, Almaev A.V.1,2, Kopyev V. V.1, Nikolaev V. I.3,4, Pechnikov A. I.3, Stepanov S. I.3, Boyko M. E. 3, Butenko P. N.1,3, Scheglov M. P.3
1Tomsk State University, Tomsk, Russia
2Fokon LLC, Kaluga, Russia
3Ioffe Institute, St. Petersburg, Russia
4Perfect Crystals LLC, Saint-Petersburg, Russia
Email: almaev001@mail.ru
α-Ga2O3/α-Cr2O3 heterostructures with a corundum structure were obtained by chloride vapor phase epitaxy and magnetron sputtering. The structural, electrical conductive and photoelectrical properties of the obtained samples were studied. It was established that the α-Ga2O3/α-Cr2O3 heterostructures exhibits weak rectifying properties and in comparison with α-Ga2O3 films has a higher response speed when exposed to ultraviolet radiation Keywords: Gallium oxide, chromium oxide, corundum, anisotypic heterostructures
- J. Moloney, O. Tesh, M. Singh, J.W. Roberts, J.C. Jarman, L.C. Lee, T.N. Huq, J. Brister, S. Karboyan, M. Kuball, P.R. Chalker, R.A. Oliver, F.C.-P. Massabuau, J. Phys. D: Appl. Phys., 52 (47), 475101 (2019). DOI: 10.1088/1361-6463/ab3b76
- K. Akaiwa, K. Kaneko, K. Ichino, S. Fujita, Jpn. J. Appl. Phys., 55, (12) 1202BA (2016). DOI: 10.7567/JJAP.55.1202BA
- A.K. Mondal, M.A. Mohamed, L.K. Ping, M.F.M. Taib, M.H. Samat, M.A.S.M. Haniff, R. Bahru, Materials, 14 (3), 604 (2021). DOI: 10.3390/ma14030604
- X.Y. Sun, X.H. Chen, J.G. Hao, Z.P. Wang, Y. Xu, H.H. Gong, Y.J. Zhang, X.X. Yu, C.D. Zhang, F.-F. Ren, S.L. Gu, R. Zhang, J.D. Ye, Appl. Phys. Lett., 119 (14), 141601 (2021). DOI: 10.1063/5.0059061
- X. Zhao, Z. Wu, D. Guo, W. Cui, P. Li, Y. An, L. Li, W. Tang, Semicond. Sci. Technol., 31 (6), 065010 (2016). DOI: 10.1088/0268-1242/31/6/065010
- D.Y. Guo, X.L. Zhao, Y.S. Zhi, W. Cui, Y.Q. Huang, Y.H. An, P.G. Li, Z.P. Wu, W.H. Tang, Mater. Lett., 164, 364 (2015). DOI: 10.1016/j.matlet.2015.11.001
- X. Hou, Y. Zou, M. Ding, Y. Qin, Z. Zhang, X. Ma, P. Tan, S. Yu, X. Zhou, X. Zhao, G. Xu, H. Sun, S. Long, J. Phys. D: Appl. Phys., 54 (4), 043001 (2020). DOI: 10.1088/1361-6463/abbb45
- S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, Appl. Phys. Rev., 5 (1), 011301 (2018). DOI: 10.1063/1.5006941
- D. Kaur, M. Kumar, Adv. Opt. Mater., 9 (9), 2002160 (2021). DOI: 10.1002/adom.202002160
- Y. Xu, C. Zhang, Y. Cheng, Z. Li, Y. Cheng, Q. Feng, D. Chen, J. Zhang, Y. Hao, Materials, 12 (22), 3670 (2019). DOI: 10.3390/ma12223670
- J.A. Spencer, A.L. Mock, A.G. Jacobs, M. Schubert, Y. Zhang, M.J. Tadjer, Appl. Phys. Rev., 9 (1), 011315 (2022). DOI: 10.1063/5.0078037
- L. Farrell, K. Fleischer, D. Caffrey, D. Mullarkey, E. Norton, I.V. Shvets, Phys. Rev. B, 91 (12), 125202 (2015). DOI: 0.1103/PhysRevB.91.125202
- A.V. Almaev, B.O. Kushnarev, E.V. Chernikov, V.A. Novikov, Tech. Phys. Lett., 46, 1028 (2020). DOI: 10.1134/S106378502010017X
- Z. Fan, M. Zhu, S. Pan, J. Ge, L. Hu, Ceram. Int., 47 (10A), 13655 (2021). DOI: 10.1016/j.ceramint.2021.01.226
- A. Polyakov, V. Nikolaev, S. Stepanov, A. Almaev, A. Pechnikov, E. Yakimov, B.O. Kushnarev, I. Shchemerov, M. Scheglov, A. Chernykh, A. Vasilev, A. Kochkova, S.J. Pearton, J. Appl. Phys., 131 (21), 215701 (2022). DOI: 10.1063/5.0090832
- A.V. Almaev, B.O. Kushnarev, E.V. Chernikov, V.A. Novikov, P.M. Korusenko, S.N. Nesov, Superlatt. Microstruct., 151, 106835 (2021). DOI: 10.1016/j.spmi.2021.106835
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.