Atomic luminescence of Ag during single-bubble sonolysis of silver nanoparticles aqueous suspension
Gareev B. M.1, Sharipov G. L.1
1Institute of Petrochemistry and Catalysis of Ufa Federal Research Center of RAS, Ufa, Russia
Email: gareev-bulat@yandex.ru

PDF
For the first time, luminescence of Ag atoms was recorded during moving single-bubble sonolysis of silver nanoparticles aqueous colloidal suspension. This glow is caused by the entry of nanoparticles into a bubble deformable during motion and their decomposition to atoms with collisional excitation in the nonequilibrium plasma of the bubble. Nanoparticles were obtained by multibubble sonolysis of an AgNO3 solution with the addition of honey. This method was used to synthesize a stable suspension of Ag nanoparticles with an average size of ~ 10 nm. By comparing the experimental spectrum of this suspension and simulated spectra of Ag, the electron temperature in the bubble plasma was found to be ~ 10 000 K. Keywords: single-bubble sonoluminescence, silver nanoparticles, electron plasma temperature.
  1. T.J. Matula, R.A. Roy, P.D. Mourad, W.B. McNamara III, K.S. Suslick, Phys. Rev. Lett., 75 (13), 2602 (1995). DOI: 10.1103/PhysRevLett.75.2602
  2. C. Sehgal, R.J. Steer, R.J. Suttherland, R.E. Verral, J. Chem. Phys., 70 (5), 2242 (1979)
  3. K.J. Taylor, P.D. Jarman, Aust. J. Phys., 23 (3), 319 (1970)
  4. S. Hatanaka, K.S. Suslick, Proc. Mtgs Acoust., 38 (1), 045029 (2019). DOI: 10.1121/2.0001173
  5. M.V. Kazachek, T.V. Gordeychuk, A.S. Pochinok, Photonics Russ., 14 (3), 260 (2020). DOI: 10.22184/1993-7296.FRos.2020.14.3.260.263
  6. T.V. Gordeychuk, M.V. Kazachek, Russ. J. Phys. Chem. A, 93 (5), 1000 (2019). DOI: 10.1134/S004445371905011X
  7. G.L. Sharipov, R.K. Gainetdinov, A.M. Abdrakhmanov, Rus. Chem. Bull., 52 (9), 1969 (2003). DOI: 10.1023/B:RUCB.0000009640.25570.49
  8. R. Pflieger, J. Schneider, B. Siboulet, H. Mohwald, S.I. Nikitenko, J. Phys. Chem., 117 (10), 2979 (2013). DOI: 10.1021/jp312067y
  9. R. Pflieger, V. Cousin, N. Barre, P. Moisy, S.I. Nikitenko, Chem. Eur. J., 18 (2), 410 (2012). DOI: 10.1002/chem.201102150
  10. G.L. Sharipov, A.M. Abdrakhmanov, B.M. Gareev, A.A. Tukhbatullin, J. Lumin., 215, 116684 (2019). DOI: 10.1016/j.jlumin.2019.116684
  11. K.S. Suslick, E.B. Flint, M.W. Grinstaff, K.A. Kemper, J. Phys. Chem., 97 (13), 3098 (1993). DOI: 10.1021/J100115A007
  12. G.L. Sharipov, B.M. Gareev, A.M. Abdrakhmanov, Ultrason. Sonochem., 51, 178 (2019). DOI: 10.1016/j.ultsonch.2018.10.028
  13. G.L. Sharipov, A.M. Abdrakhmanov, B.M. Gareev, A.A. Tukhbatullin, Ultrason. Sonochem., 61, 104842 (2020). DOI: 10.1016/j.ultsonch.2019.104842
  14. X. Hangxun, K.S. Suslick, ACS Nano, 4 (6), 3209 (2010). DOI: 10.1021/nn100987k
  15. A. Ebrahiminezhad, S. Taghizadeh, Y. Ghasemi, Am. J. Biochem. Biotechnol., 13 (1), 1 (2017). DOI: 10.3844/ajbbsp.2017.1.6
  16. A. Sharanappa, A.R. Shet, L.R. Patil, V.S. Hombalimath, S. Kadapure, Int. J. Res. Pharm. Sci., 11 (3), 4726 (2020). DOI: 10.26452/ijrps.v11i3.2762
  17. C. Santos-Buelga, A.M. Gonzales-Paramas, in Bee products --- chemical and biological properties, ed. by J.M. Alvarez-Suares (Springer, Cham, 2017), p. 43--82. DOI: 10.1007/978-3-319-59689-1_3
  18. A. Kramida, Y. Ralchenko, J. Reader, NIST ASD Team (2018). NIST Atomic Spectra Database (ver. 5.6.1) [Electronic source]. URL: https://physics.nist.gov/asd
  19. D.J. Flannigan, J. Chem. Educ., 91 (10), 1736 (2014). DOI: 10.1021/ed500479u

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru