Influence of formation conditions of silicon diodes on their reverse currents
Bulyarskiy S. V. 1,2, Kitsyuk E. P.2, Lakalin A. V.1,2, Saurov M. A.2, Svetukhin V. V.2, Orlov A. P. 1, Rudakov G. A.1
1 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
2Research and Production Complex “Technological Center” MIET, Zelenograd, Moscow, Russia
Email: bulyar2954@mail.ru, andreyorlov@mail.ru

PDF
In this work, a study was made of the influence of silicon diode manufacturing technology on the emergence of generation and recombination centers. The electrical characteristics of p-n junctions formed in different ways on n-type silicon substrates were compared: a) the p-type layer was created by the diffusion method; b) the p-type layer was formed by ion implantation into an epitaxial n-layer preliminarily grown on the substrate; c) two n- and p-type epitaxial layers were successively deposited on the substrate. It has been established that for diodes based on a double epitaxial layer, the direct and reverse current-voltage characteristics (CVC) are due to the diffusion mechanism, and the structures themselves have a low concentration of recombination centers. At the same time, in diodes based on the diffusion method and ion implantation, the CVCs are due to the generation-recombination mechanism. With reverse bias, electron-phonon processes play a significant role in the formation of the CVC, and with forward bias, carrier recombination in the region of the space charge of the p-n junction. The concentrations and energies of recombination centers have been determined. Keywords: forward and reverse current-voltage characteristic, p-n junction, diffusion, ion implantation, epitaxy, recombination centers, the Poole-Frenkel effect, electron-phonon interaction.
  1. S.V. Bulyarskiy, A.N. Saurov. Fizika poluprovodnikovykh preobrazovateley (M., RAS, 2018) (in Russian)
  2. S.V. Bulyarskiy. Solid-State Electron., 160 (9), 107624 (2019). https://doi.org/10.1016/j.sse.2019.107624
  3. S.V. Bulyarskiy, A.V. Lakalin, M.A. Saurov. FTP, 55 (1), 69 (2021) (in Russian). https://doi.org/10.21883/FTP.2021.01.50389.9455
  4. S.V. Bulyarskiy, A.V. Lakalin, M.A. Saurov, G.G. Gusarov. J. Appl. Phys., 128 (15), 155702 (2020). https://doi.org/10.1063/5.0023411
  5. W. Shockley. Bell Syst. Techn. J., 28 (3), 435 (1949). https://doi.org/10.1002/j.1538-7305.1949.tb03645.x
  6. K.A. Abdullah, F.A. Alloush, A. Jaafar, C. Salame. Energy Procedia, 36, 104 (2013). https://doi.org/10.1016/j.egypro.2013.07.013
  7. C.-T. Sah, R. Noyce, W. Shockley. Proc. IRE, 45 (9), 1228 (1957). https://doi.org/10.1109/JRPROC.1957.278528
  8. Q. Shan, D.S. Meyaard, Q. Dai, J. Cho, F. Schubert E., J. Kon Son, C. Sone. Appl. Phys. Lett., 99 (25), 253506 (2011). https://doi.org/10.1063/1.3668104
  9. M. Musolino, D. van Treeck, A. Tahraoui, L. Scarparo, C. de Santi, M. Meneghini, E. Zanoni, L. Geelhaar, H. Riechert. J. Appl. Phys., 119 (4), 44502 (2016). https://doi.org/10.1063/1.4940949
  10. S.F. Timashev. FTT, 16, 804 (1974) (in Russian)
  11. G. Kissinger, J. Dabrowski, T. Sinno, Y. Yang, D. Kot, A. Sattler. J. Cryst. Growth, 468 (4), 424 (2017). https://doi.org/10.1016/j.jcrysgro.2016.10.073
  12. S. Selberherr, P. Pichler. Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon (Vienna, Springer Vienna, 2004)
  13. J.H. Evans-Freeman, A.R. Peaker, I.D. Hawkins, P.Y.Y. Kan, J. Terry, L. Rubaldo, M. Ahmed, S. Watts, L. Dobaczewski. Mater. Sci. Semicond. Process., 3 (4), 237 (2000). https://doi.org/10.1016/S1369-8001(00)00038-X
  14. I. Capan, v Z. Pastuovic, R. Siegele, R. Jacimovic. Nucl. Instrum. Meth. Phys. Res. Sect. B, 372 (3), 156 (2016). https://doi.org/10.1016/j.nimb.2015.12.039
  15. Y. Qin, P. Wang, S. Jin, C. Cui, D. Yang, X. Yu. Mater. Sci. Semicond. Process., 98, 65 (2019). https://doi.org/10.1016/j.mssp.2019.03.027
  16. S.D. Brotherton, P. Bradley. J. Appl. Phys., 53 (8), 5720 (1982). https://doi.org/10.1063/1.331460
  17. J.M. Meese, J.W. Farmer, C.D. Lamp. Phys. Rev. Lett., 51 (14), 1286 (1983). https://doi.org/10.1103/PhysRevLett.51.1286
  18. A.M. Frens, M.T. Bennebroek, A. Zakrzewski, J. Schmidt, W.M. Chen, E. Janzen, J.L. Lindstrom, B. Monemar. Phys. Rev. Lett., 72 (18), 2939 (1994). https://doi.org/10.1103/PhysRevLett.72.2939
  19. G. Alfieri, E.V. Monakhov, B.S. Avset, B.G. Svensson. Phys. Rev. B, 68 (23), 2653 (2003). https://doi.org/10.1103/PhysRevB.68.233202

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru