Effect of Hydrogen Implantation Dose on the Relaxation of Electrophysical Characteristics of Silicon-on-Insulator Structures after Exposure to X-rays
Abrosimova N.D.1, Yunin P. A.2, Drozdov M.N.2, Obolenskii S.V.3
1Sedakov Scientific Research Institute of Measurement Systems, Nizhny Novgorod, Russia
2Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
3Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
Email: yunin@ipmras.ru
Experimental studies of the relaxation of electrophysical parameters of SOI structures with different doses of hydrogen implantation after exposure to stationary X-ray radiation are presented. Investigation of high-frequency CV characteristics and pseudo-MOS transistors made it possible to obtain information about the accumulated charge, the density of surface states, mobility of carriers. The impurity composition and depth profile of hydrogen concentration were determined by the SIMS method. Structural perfection of the layers and interfaces was evaluated using the XRR and XRD methods. A different nature of the relaxation dependence and the recovery time of the electrophysical parameters for SOI structures with different doses of hydrogen implantation are recorded. The values of mobility and charge density are higher for the structure with a lower hydrogen implantation dose. Keywords: Ion implantation, silicon on insulator, radiation resistance, X-ray diffraction, pseudo-MOS transistor, residual hydrogen, SIMS.
- P. Hemmet, V.S. Lysenko, A.N. Nazarov. Perspective Science and Technologies for Novel Silicon on Insulator Devices (Dordrecht, Springer Science and Business Media, 2012)
- A.I. Belous, V.A. Solodukha, S.V. Shvedov Kosmicheskaya elektronika. (Tekhnosfera, M., 2015), t. 2 (in Russian)
- J.P. Colinge. Silicon-on-Insulator Technology: Materials to VLSI (N.Y., Kluwer Academic Publishers, 1997)
- H. Tobias. On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage (Doctoral Dissertation, Marburg/Lahn, 2001)
- M.D. Varentsov, G.P. Gaidar, A.P. Dolgolenko, P.G. Litovchenko. Vopr. atomnoy nauki i tekhn., 96 (5), 27 (2010) (in Russian)
- N.M. Johnson, C. Herring, C.G. Van de Walle. Phys. Rev. Lett., 73 (1), 130 (1994)
- O. Feklisova, N. Yarykin, E.B. Yakimov, J. Weber. Physica B: Condens. Matter, 308--310, 210 (2001)
- V.S. Pershenkov, V.D. Popov, A.V. Shalnov. Poverkhnostnye radiatsionnye effecty v elementakh integral'nykh mikroskhem (M., Energoatomizdat, 1988) (in Russian)
- N.D. Abrosimova, V.K. Smolin. Nano- i mikrosistemnaya tekhnika, 20 (8), 456 (2018) (in Russian)
- K.I. Tapero, V.N. Ulimov, A.M. Chlenov. Radiatsionnye effekty v kremnievykh integral'nykh skhemakh kosmicheskogo primemeniya (M., BINOM, Laboratoriya znanij, 2012) (in Russian)
- A.Yu. Nikiphorov, V.A. Telets, A.I. Chumakov. Radiatsionnye effekty in KMOP IS (M., Radio i svyaz', 1994) (in Russian)
- N.D. Abosimova, M.N. Drozdov, S.V. Obolensky. ZhTF, 90 (11), 1850 (2020)
- S. Cristoloveanu, S.S. Li. Electrical Characterization of Silicon-on-Insulator Materials and Devices (N.Y., Springer, 1995)
- D.K. Schroder. Semiconductor Material and Device Characterization (N.J., John Wiley \& Sons Inc., 1990)
- H.J. Hovel. Solid-State Electron., 47, 1311 (2003)
- S.S. Cristoloveanu, S. Williams. IEEE Electron. Dev. Lett., 13 (2), 102 (1992)
- A.R. Chelyadinsky, V.Yu. Yavid, P. Vengerek. Tr. 5-i Mezhdunar. konf. "Vzaimodeistvie izlucheniy s tverdym telom" (Minsk, Belarus', 2003) s. 206 (in Russian)
- V.A. Gritsenko. UFN 178, 727 (2008) (in Russian)
- P.A. Yunin, Yu.N. Drozdov, M.N. Drozdov, S.A. Korolev, D.N. Lobanov. FTP, 47 (12), 1580 (2013) (in Russian)
- V.M. Vorotyntsev, V.A. Perevoschikov, V.D. Skupov. Bazovye protsessy micro- i nanoelectroniki (N. Novgorod, 2006) (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.