Improving the physical and mechanical characteristics of unalloyed titanium VT1-0 and studying the effect of selective laser melting parameters
Gryaznov M. Yu. 1, Shotin S. V. 1, Chuvildeev V. N. 1, Sysoev A. N. 1, Melekhin N. V. 1, Piskunov A. V. 1, Sakharov N. V. 1, Semenycheva A. V. 1, Murashov A. A. 1
1Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
Email: gryaznov@nifti.unn.ru, shotin@nifti.unn.ru, chuvildeev@nifti.unn.ru, otd5-nifti@yandex.ru

PDF
Comprehensive studies of the physical and mechanical properties and structure of VT1-0 titanium samples processed by selective laser melting have been carried out. High strength characteristics (the ultimate tensile strength of 820 MPa, the yield strength of 710 MPa) have been achieved. These exceed by 2 times the values for this material produced using conventional technology. The formation of the martensitic α'-phase, obtained due to the high crystallization rates realized in selective laser melting process, is the reason for the increase in the mechanical characteristics of titanium VT1-0. Mechanical characteristics of titanium VT1-0 subjected to high-temperature annealing demonstrated a monotonous decrease in strength parameters by 15% and an increase in plastic characteristics by 30%. It is shown that the technology of selective laser melting makes it possible to solve the problem of improving the strength characteristics of unalloyed titanium to create a new class of medical devices. Keywords: unalloyed titanium, VT1-0, additive technology, selective laser melting, density, strength, plasticity, elastic modulus, microstructure, implants for surgery.
  1. D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen. Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications (Springer, Berlin, 2001)
  2. A.T. Sidambe. Materials, 7, 8168 (2014). DOI: 10.3390/ma7128168
  3. N. Schiff, B. Grosgogeat, M. Lissac, F. Dalard. Biomaterials, 23, 1995 (2002). DOI: 10.1016/S0142-9612(01)00328-3
  4. I.N. Friedlander. Mashinostroenie. Entsiklopediya: Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy (Mashinostroenie, M., 2001), t. II-3. (in Russian)
  5. Implanty dlya khirurgii. Metallicheskie materialy. Implanty dlya khirurgii. Metallicheskie materialy. Chast 3. Deformiruemyj splav na osnove titana, 6-alyuminiya i 4-vanadiya (GOST R ISO 5832-3-2020) (in Russian)
  6. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia. Prog. Mater. Sci., 54, 397 (2009). DOI: 10.1016/j.pmatsci.2008.06.004
  7. J. Mazurek-Popczyk, L. Palka, K. Arkusz, B. Dalewski, K. Baldy-Chudzik. Injury, 53, 938 (2022). DOI: 10.1016/j.injury.2021.12.020
  8. A.X.Y. Guo, L. Cheng, S. Zhan, S. Zhang, W. Xiong, Z. Wang, G. Wang, S. C. Cao. J. Mater. Sci. Technol., 125, 252 (2022). DOI: 10.1016/j.jmst.2021.11.084
  9. N.A. Koporushko, S.V. Mishinov, V.V. Stupak. Politravma, 3, 54 (2020). (in Russian) DOI: 10.24411/1819-1495-2020-10033
  10. S. Bo, S. Wen, C. Yan, Q. Wei, Y. Shi. Selective Laser Melting for Metal and Metal Matrix Composites (Academic Press, London, 2021), DOI: 10.1016/C2018-0-01940-4
  11. I. Yadroitsev, I. Yadroitsava, A. Du Plessis, E. Macdonald. Fundamentals of Laser Powder Bed Fusion of Metals (Elsevier, 2021), DOI: 10.1016/C2020-0-01200-4
  12. N.V. Kazantseva, P.V. Krakhmalev, I.A. Yadroitseva, I.A. Yadroitsev. FMM 122, 8 (2021) (in Russian). DOI: 10.31857/S001532302101006X
  13. F.N. Depboylu, E. Yasa, O. Poyraz, J. Minguella-Canela, F. Korkusuz, M.A. de los Santos Lopez. J. Mater. Res. Technol., 17, 1408 (2022). DOI: 10.1016/j.jmrt.2022.01.087
  14. H. Attar, M.J. Bermingham, S. Ehtemam-Haghighi, A. Dehghan-Manshadi, D. Kent, M.S. Dargusch. Mater. Sci. Eng. A, 760, 339 (2019). DOI: 10.1016/j.msea.2019.06.024
  15. C.-L. Li, C.-S. Wang, P.L. Narayana, J.-K. Hong, S.-W. Choi, J.H. Kim, S.W. Lee, C.H. Park, J.-T. Yeom, Q. Mei. J. Mater. Res. Technol., 11, 301 (2021). DOI: 10.1016/j.jmrt.2021.01.008
  16. C.-L. Li, J.W. Won, S.-W. Choi, J.-H. Choe, S. Lee, C.H. Park, J.-T. Yeom, J.K. Hong. J. Alloy Compd., 803, 407 (2019). DOI: 10.1016/j.jallcom.2019.06.305
  17. M.T. Hasib, H.E. Ostergaard, Q. Liu, X. Li, J.J. Kruzic. Addit. Manuf., 45, 102027 (2021). DOI: 10.1016/j.addma.2021.102027
  18. H. Attar, S. Ehtemam-Haghighi, D. Kent, X. Wu, M.S. Dargusch. Mater. Sci. Eng. A, 705, 385 (2017). DOI: 10.1016/j.msea.2017.08.103
  19. L. Zhou, T. Yuan, J. Tang, J. He, R. Li. Opt. Laser Technol., 119, 105625 (2019). DOI: 10.1016/j.optlastec.2019.105625
  20. B. Wysocki, P. Maj, A. Krawczynska, K. Rozniatowski, J. Zdunek, K.J. Kurzyd owski, W. Swi eszkowski. J. Mater. Process. Tech., 241, 13 (2017). DOI: 10.1016/j.jmatprotec.2016.10.022
  21. D. Gu, Y.-C. Hagedorn, W. Meiners, G. Meng, R.J. Santos Batista, K. Wissenbach, R. Poprawe. Acta Mater., 60, 3849 (2012). DOI: 10.1016/j.actamat.2012.04.006
  22. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann. Acta Mater., 117, 371 (2016). DOI:.1016/j.actamat.2016.07.019
  23. H.D. Nguyen, A. Pramanik, A.K. Basak, Y. Dong, C. Prakash, S. Debnath, S. Shankar, I.S. Jawahir, S. Dixit, D. Buddhi. J. Mater. Res. Technol., 18, 4641 (2022). DOI: 10.1016/j.jmrt.2022.04.055
  24. A. Ataee, Y. Li, M. Brandt, C. Wen. Acta Mater., 158, 354 (2018). DOI: 10.1016/j.actamat.2018.08.005
  25. H. Attar, M. Calin, L.C. Zhang, S. Scudino, J. Eckert. Mater. Sci. Eng. A, 593, 170 (2014) DOI: 10.1016/j.msea.2013.11.038
  26. Q. Tao, Z. Wang, G. Chen, W.C.P. Cao, C. Zhang, W. Ding, X. Lu, T. Luo, X. Qu, M. Qin. Addit. Manuf., 34, 101198 (2020). DOI: 10.1016/j.addma.2020.101198
  27. Y.P. Dong, J.C. Tang, D.W. Wang, N. Wang, Z.D. He, J. Li, D.P. Zhao, M. Yan. Mater. Design, 196, 109142 (2020). DOI: 10.1016/j.matdes.2020.109142
  28. T. Mishurova, K. Artzt, J. Haubrich, G. Requena, G. Bruno. Addit. Manuf., 25, 325 (2019). DOI: 10.1016/j.addma.2018.11.023
  29. P. Tan, R. Kiran, K. Zhou. J. Manuf. Process., 64, 816 (2021). DOI: 10.1016/j.jmapro.2021.01.058
  30. H. Wang, Y. Zou. Int. J. Heat Mass Tran., 142, 118473 (2019). DOI: 10.1016/j.ijheatmasstransfer.2019.118473
  31. H. Salem, L.N. Carter, M.M. Attallah, H.G. Salem. Mater. Sci. Eng. A, 767, 138387 (2019). DOI: 10.1016/j.msea.2019.138387

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru