The mechanism of current flow in composite alumochromiun ceramics during its electron beam sintering in a forevacuum
Zenin A. A.
1, Bakeev I. Yu.
1, Dolgova A. V.
1, Klimov A. S.
1, Oks E. M.
1,21Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
2Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
Email: zenin1988@gmail.com, bakeeviyu@mail.ru, weatheraregood@gmail.com, klimov680@gmail.com, oks@fet.tusur.ru
It is shown that during electron beam sintering in the forevacuum pressure region of powder components of composite Al2O3-Cr ceramics, the magnitude of the current flowing through the sample depends both on the percentage of chromium and on the heating temperature of the sample. When a certain temperature is reached, the process of current flow is influenced by thermoelectric emission from the sample surface. Along with the ions from the beam plasma, a noticeable thermoelectric emission current contributes to the process of neutralizing the charging of the ceramic surface with an electron beam and reduces the absolute value of the negative potential of the sample surface. This ultimately contributes to an increase in the efficiency of energy transfer from the electron beam to the sample. Keywords: Electron beam irradiation of oxide ceramics, electrical conductivity, alumina ceramics, chromium, composite, electron beam, forevacuum.
- J. Huang, P.K. Nayak. Advances in Nanocomposite Technol., 7, (2011). DOI: 10.5772/17899
- J.L. Guichard, O. Tillement, A. Mocellin. J. Europ. Ceramic Society, 18 (12), 1743 (1998)
- D. Osso, O. Tillement, A. Mocellin, G. Le Caer, 0. Babushkin, T. Lindback. J. Europ. Ceramic Society, 15 (12), 1207 (1995). DOI: 10.1016/0955-2219(95)00096-8
- T.S. Shelvin. J. American Ceramic Society, 37 (3), 140 (1954)
- J.L. Guichard, A. Mocellin, M.O. Simonnot, J.F. Remy, M. Sardin. Powder Technol., 99 (3), 257 (1998)
- M. Chmielewski, K. Pietrzak. J. Europ. Ceramic Society, 27 (2), 1273 (2007)
- Y. Ji, J.A. Yemans. J. Mater. Sci., 37 (24), 5229 (2002)
- M. Tokita. Advances Sci. Technol., 63, 322 (2010)
- S.K. Tiwari, S. Pande, S. Agrawal, S.M. Bobade. Rapid Prototyping J., 21 (6), 630 (2015). DOI: 10.1108/RPJ-03-2013-0027
- O. Khasanov, U. Reichel, E. Dvilis, A. Khasanov. IOP Conference Series: Mater. Sci. Engineer., 18 (8), 082004 (2011). DOI:10.1088/1757-899X/18/8/082004
- C.N. Sun, M.C. Gupta, K.M. Taminger. J. American Ceramic Society, 93 (9), 2484 (2010). DOI:10.1111/j.1551-2916.2010.03832.x
- V. Burdovitsin, E. Dvilis, A. Zenin, A. Klimov, E. Oks, V. Sokolov, O. Khasanov. Advanced Mater. Res., 872, 150 (2014)
- V.K.V. Pasagada, N. Yang, C. Xu. Ceramics Intern., 48 (7), 10174. DOI: 10.1016/j.ceramint.2021.12.229
- A. Kirchner, B. Kloden, J. Luft, T. Weib garber, B. Kieback. Powder Metall, 58 (4), 246 (2015). DOI: 10.1179/0032589915Z.000000000244
- E. Oks. Plasma Cathode Electron Sources: Physics, Technology, Applications (Weinheim, Wiley --- VCH Verlag GmbH \& CO. KGaA, 2006)
- A.S. Klimov, I.Y. Bakeev, E.S. Dvilis, E.M. Oks, A.A. Zenin. Vacuum, 169, 108933 (2019). DOI: 10.1016/j.vacuum.2019.108933
- A.S. Klimov, V.A. Burdovitsin, A.A. Zenin, E.M. Oks, O.L. Khasanov, E.S. Dvilis, A.O. Khasanov. Tech. Phys. Lett., 41 (8), 747 (2015). DOI: 10.1134/S1063785015080118
- A.A. Zenin, I.Y. Bakeev, A.S. Klimov, E.M. Oks. Plasma Sources Sci. Technol., 30 (3), 035007 (2021). DOI: 10.1088/1361-6595/abe175
- S. Dushman. Reviews of Modern Phys., 2 (4), 381. DOI: 10.1103/RevModPhys.2.381
- D. Bohm. The Characteristics of Electrical Discharges in Magnetic Fields (McGraw-Hill, NY., 1949), p. 77
- H. Ibach, H. Luth. Semiconductors. In: Solid-State Physics (Springer, Berlin, Heidelberg, 2009), DOI:10.1007/978-3-540-93804-0_12
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.