The luminescence photostability of carbon nanodots synthesized by the plasma method from a glucose solution after UV radiation
Tyutrin A.A.
1,2, Rakevich A. L.
1, Martynovich E.F.
1,21Irkutsk Branch of Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
2Irkutsk State University, Irkutsk, Russia
Email: tyutrin.aleks@gmail.com
Carbon nanodots (CNDs) were synthesized by the microplasma method using a glucose solution as a precursor. The photoluminescence of CNDs before and after UV irradiation was studied. The spectral and kinetic properties of the synthesized CNDs were studied using a MicroTime 200 confocal scanning luminescence microscope. It was experimentally demonstrated that the short component (tau1) of luminescence refers to C=O bonds on the CND surface. A significant decrease in the luminescence intensity of CNDs after UV irradiation due to a decrease in oxygen-containing groups on the surface of carbon dots was found. Keywords: Luminescence, carbon nanodots, photostability, time-correlated photon counting.
- X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, J. Am. Chem. Soc., 126, 12736 (2004). DOI: 10.1021/ja040082h
- X. Wang, Y. Feng, P. Dong, J. Huang, Front. Chem., 7, 671 (2019). DOI: 10.3389/fchem.2019.00671
- S. Cailotto, E. Amadio, M. Facchin, M. Selva, E. Pontoglio, F. Rizzolio, P. Riello, G. Toffoli, A. Benedetti, A. Perosa, ACS Med. Chem. Lett., 9, 832 (2018). DOI: 10.1021/acsmedchemlett.8b00240
- N. Ullal, K. Muthamma, D. Sunil, Chem. Pap., 76, 6097 (2022). DOI: 10.1007/s11696-022-02353-3
- M. Zulfajri, S. Sudewi, S. Ismulyati, A. Rasool, M. Adlim, G.G. Huang, Coatings, 11, 1100 (2021). DOI: 10.3390/coatings11091100
- P. Kumar, S. Dua, R. Kaur, M. Kumar, G. Bhatt, RSC Adv., 12, 4714 (2022). DOI: 10.1039/D1RA08452F
- D. Ghosh, K. Sarkar, P. Devi, K.-H. Kim, P. Kumar, Renew. Sustain. Energy Rev., 135, 110391 (2021). DOI: 10.1016/j.rser.2020.110391
- S. Anwar, H. Ding, M. Xu, X. Hu, Z. Li, J. Wang, L. Liu, L. Jiang, D. Wang, C. Dong, M. Yan, Q. Wang, H. Bi, ACS Appl. Bio Mater., 2, 2317 (2019). DOI: 10.1021/acsabm.9b00112
- M.J. Molaei, RSC Adv., 9, 6460 (2019). DOI: 10.1039/C8RA08088G
- F.R. Baptista, S.A. Belhout, S. Giordani, S.J. Quinn, Chem. Soc. Rev., 44, 4433 (2015). DOI: 10.1039/C4CS00379A
- W. Jiang, Y. Zhao, X. Zhu, H. Liu, B. Sun, Adv. NanoBiomedRes., 1, 2000042 (2021). DOI: 10.1002/anbr.202000042
- E.A. Stepanidenko, E.V. Ushakova, A.V. Fedorov, A.L. Rogach, Nanomaterials, 11, 364 (2021). DOI: 10.3390/nano11020364
- D. Tan, S. Zhou, Y. Shimotsuma, K. Miura, J. Qiu, Opt. Mater. Express, 4, 213 (2014). DOI: 10.1364/OME.4.000213
- M. Sun, C. Liang, Z. Tian, E.V. Ushakova, D. Li, G. Xing, S. Qu, A.L. Rogach, J. Phys. Chem. Lett., 10, 3094 (2019). DOI: 10.1021/acs.jpclett.9b00842
- A.A. Tyutrin, R. Wang, E.F. Martynovich, J. Lumin., 246, 118806 (2022). DOI: 10.1016/j.jlumin.2022.118806
- A.M. El-Shafey, Green Process. Synth., 10, 134 (2021). DOI: 10.1515/gps-2021-0006
- L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, S.P. Lau, ACS Nano, 6, 5102 (2012). DOI: 10.1021/nn300760g
- C.D. Stachurski, S.M. Click, K.D. Wolfe, D. Dervishogullari, S.J. Rosenthal, G.K. Jennings, D.E. Cliffel, Nanoscale Adv., 2, 3375 (2020). DOI: 10.1039/D0NA00264J
- H. Zheng, Q. Wang, Y. Long, H. Zhang, X. Huang, R. Zhu, Chem. Commun., 47, 10650 (2011). DOI: 10.1039/c1cc14741b
- J.E. McMurry, Fundamentals of organic chemistry (Thomson Brooks Cole, 2008)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.