Reduction of misfit dislocation density in metamorphic heterostructures by design optimization of the buffer layer with non-linear graded composition profile
Chernov M. Yu.
1, Solov’ev V. A.
1, Ivanov S. V.
11Ioffe Institute, St. Petersburg, Russia
Email: chernov@beam.ioffe.ru, vasol@beam.ioffe.ru, ivan@beam.ioffe.ru
Equilibrium distributions of misfit dislocation density along the growth direction of metamorphic buffer layers InxAl1-xAs/GaAs with maximum In content xmax≥0.77 and different non-linear graded composition profiles x propto z1/n are calculated. The effect of the initial In composition (n=2) of InxAl1-xAs buffer layer with convex-graded (xmin) composition profile on misfit dislocation density as well as amount of residual stresses at its top part is considered. Using computational approach, it was shown that a dislocation-free region is formed under thin tensile-strained GaAs layer (1-10 nm) inserted into InAlAs metamorphic buffer layer, which agrees with experimental data obtained early by transmission electron microscopy. Novel non-linear graded composition profile of metamorphic buffer layer has been proposed, which results in twice reduction of misfit dislocation density as compared to the convex-graded one. In addition, equilibrium distributions of misfit dislocation density in the HEMT heterostructures with two-dimensional electron channel InxAl1-xAs, which are based on In0.75Ga0.25As/In0.75Al0.25As metamorphic buffer layer of various designs, are calculated. The values of inverse steps (Delta), representing the difference between the maximum In content of InxAl1-xAs (xmax) and In content of In0.75Al0.25As virtual substrate, at which relaxation of the elastic strains in 2D channel In0.75Ga0.25As/In0.75Al0.25As doesn't occur, are calculated for metamorphic buffer layers InxAl1-xAs with convex-graded and optimized non-linear graded composition profiles. Keywords: metamorphic heterostructures, metamorphic buffer layer, misfit dislocations, elastic stresses, In(Ga,Al)As/GaAs.
- S.H. Shin, J.-P. Shim, H. Jang, J.-H. Jang. Micromachines, 14 (1), 56 (2023)
- J. Ajayan, D. Nirmal. Superlat. Microstruct., 86, 1 (2015)
- S.V. Ivanov, M.Yu. Chernov, V.A. Solov'ev, P.N. Brunkov, D.D. Firsov, O.S. Komkov. Progr. Cryst. Growth Charact. Mater., 65 (1), 20 (2019)
- S. Ke, D. Li, S. Chen. J. Phys. D: Appl. Phys., 53, 323001 (2020)
- Y. Du, B. Xu, G. Wang, Y. Miao, B. Li, Z. Kong, Y. Dong, W. Wang, H.H. Radamson. Nanomaterials, 12 (5), 741 (2022)
- M.S. Abrahams, L.R. Wiesberg, C.J. Buiocchi, J. Blanc. J. Mater. Sci., 4, 223 (1969)
- J. Tersoff. Appl. Phys. Lett., 62, 693 (1993)
- G.B. Galiev, S.S. Pushkarev, E.A. Klimov, P.P. Maltsev, R.M. Imamov, I.A. Subbotin. Crystallography Reports, 59, 258 (2014)
- L.W. Khai, T.K. Hua, L. Daosheng, S. Wicaksono, Y.S. Fatt. IEEE Phot. Techn. Lett., 29 (5), 458 (2017)
- Y. He, W. Yan. Optical Quant. Electron., 52, 372 (2020)
- S. Park, J. Jeon, V.M. More, R.S. Lee, Y. Seo, M. Kim, P.D. Nguyen, M. Kim, J.S. Kim, Y. Kim, S.J. Lee. Appl. Surf. Sci., 581, 152421 (2022)
- D.J. Dunstan. J. Mater. Sci.: Mater. Electron., 8, 337 (1997)
- F. Romanato, E. Napolitani, A. Carnera, A.V. Drigo, L. Lazzarini, G. Salviati, C. Ferrari, A. Bosacchi, S. Franchi. J. Appl. Phys., 86, 4748 (1999)
- D.V. Pobat, V.A. Soloviev, M.Yu. Chernov, S.V. Ivanov. FTT, 63 (1), 85 (2021). (in Russian)
- H. Choi, Y. Jeong, J. Cho, M.H. Jeon. J. Cryst. Growth, 311 (4), 1091 (2009)
- M.Yu. Chernov, O.S. Komkov, D.D. Firsov, B.Ya. Meltser, A.N. Semenov, Ya.V. Terent'ev, P.N. Brunkov, A.A. Sitnikova, P.S. Kop'ev, S.V. Ivanov, V.A. Solov'ev. J. Cryst. Growth, 477, 97 (2017)
- B. Bertoli, E.N. Suarez, J.E. Ayers, F.C. Jain. J. Appl. Phys., 106, 073519 (2009)
- M.Yu. Chernov, V.A. Solov'ev, O.S. Komkov, D.D. Firsov, B.Ya. Meltser, M.A. Yagovkina, M.V. Baidakova, P.S. Kop'ev, S.V. Ivanov. Appl. Phys. Express, 10, 121201 (2017)
- O.S. Komkov, D.D. Firsov, M.Yu. Chernov, V.A. Solov'ev, A.A. Sitnikova, P.S. Kop'ev, S.V. Ivanov. J. Phys. D: Appl. Phys., 51, 055106 (2018)
- G.B. Galiev, S.S. Pushkarev, I.S. Vasil'evskii, E.A. Klimov, R.M. Imamov, I.A. Subbotin, E.S. Pavlenko, A.L. Kvanin. Crystallography Reports, 57, 841 (2012)
- T. Ganbold, M. Antonelli, G. Biasiol, G. Cautero, H. Jark, D.M. Eichert, R. Cucini, R.H. Menk. J. Instrum., 9, C12043 (2014)
- M. Tamura, A. Hashimoto, Y. Nakatsugawa. J. Appl. Phys., 72, 3398 (1992)
- V.N. Jmerik, D.V. Nechaev, S. Rouvimov, V.V. Ratnikov, P.S. Kop'ev, M.V. Rzheutski, E.V. Lutsenko, G.P. Yablonskii, M. Aljohenii, A. Aljerwii, A. Alyamani, S.V. Ivanov. J. Mater. Res., 30, 2871 (2015)
- V.A. Soloviev, M.Yu. Chernov, O.S. Komkov, D.D. Firsov, A.A. Sitnikova, S.V. Ivanov. Pisma ZhETF, 109 (6), 381 (2019). (in Russian)
- V.A. Solov'ev, M.Yu. Chernov, M.V. Baidakova, D.A. Kirilenko, M.A. Yagovkina, A.A. Sitnikova, T.A. Komissarova, P.S. Kop'ev, S.V. Ivanov. Superlat. Microstruct., 113, 777 (2018).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.