Reznik A.N.
1, Vostokov N. V.1
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: reznik@ipmras.ru, vostokov@ipm.sci-nnov.ru
Microwave voltage-impedance spectroscopy is used to study a semiconductor structure in the form of a doped n-GaAs film grown on a conducting n^+-GaAs substrate with a buffer sublayer. A system of concentric barrier contacts is formed on the structure surface. A technique has been developed for measuring complex impedance spectrum Z(f,U) of the sample as a function of DC bias voltage U. Spectra Z(f,U) were measured using a Cascade Microtech probe station in the frequency range 0.01-40 GHz with a lateral resolution of 15-30 μm at U=0-10 V. The main electrophysical characteristics of a semiconductor film were determined from the spectra: type, concentration and mobility of free charge carriers, electrical conductivity. An excess resistance was found in the range f=0.1-20 GHz. This effect is interpreted as the deep states (traps) recharging for two types of traps - low-frequency l and high-frequency h with characteristic time tau_l=10-9 s, tau_h=4.2·10-11 s. A model description is proposed that explains the characteristic shape of the trap resistance spectrum, its dependence on the contact area and voltage U. Keywords: microwave band, near field, impedance, semiconductor, barier contact, deep states, electrophysical characteristics.
- S.M. Anlage, V.V. Talanov, A.R. Schwartz. Principles of Near-Field Microwave microscopy", in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, ed. by S.Kalinin and A. Gruverman (Springer Verlag, Berlin, 2007) p. 215
- K. Lai, W. Kundhikanjana, M.A. Kelly, Z.-X. Shen. Appl. Nanosci., 1, 13 (2011)
- A. Imtiaz, T.M. Wallis, P. Kabos. IEEE Micrwave Mag., 15, 52 (2014)
- S. Berweger, T.M. Wallis, P. Kabos. IEEE Micrwave Mag., 21, 36 (2020)
- A.N. Reznik, E.V. Demidov. J. Appl. Phys., 113, 094501 (2013)
- A.N. Reznik, S.A. Korolyov. J. Appl. Phys., 119, 094504 (2016)
- O. Amster, F. Stanke, S. Friedman, Y. Yang, St.J. Dixon-Warren, B. Drevniok. Microelectron. Reliab., 76--77, 214 (2017)
- S. Hommel, N. Killat, A. Altes, T. Schweinboeck, F. Kreupl. Microelectron. Reliab., 76--77, 221 (2017)
- S. Berweger, G.A. MacDonald, M. Yang, K.J. Coakley, J.J. Berry, K. Zhu, F.W. DelRio, T.M. Wallis, P. Kabos. Nano Lett., 17, 1796 (2017)
- A.N. Reznik, S.A. Korolyov, M.N. Drozdov. J. Appl. Phys., 121, 164503 (2017)
- A. Buchter, J. Hoffman, A. Delvallee, E. Brinciotti, D. Hapiuk, C. Licitra, K. Louarn, A. Arnoult, G. Almuneau, F. Piquemal, M. Zeier, F. Kienberger. Rev. Sci. Instrum., 89, 023704 (2018)
- S.A. Korolyov, A.N. Reznik. Rev. Sci. Instrum., 89, 023706 (2018)
- X. Guo, K. Bertling, A.D. Rakic. Appl. Phys. Lett., 118, 041103 (2021)
- X. Guo, X. He, Z. Degnan, B.C. Donose, K. Bertling, A. Fedorov, A.D. Rakic, P. Jacobson. Appl. Phys. Lett., 119, 091101 (2021)
- V.L. Bonch-Bruevich, S.G. Kalashnikov. Physics of Semiconductors (VEB, Berlin, 1982)
- A.N. Reznik, N.V. Vostokov, N.K. Vdovicheva, S.A. Korolyov, V.I. Shashkin. J. Appl. Phys., 122, 244505 (2017)
- A.N. Reznik, N.V. Vostokov, N.K. Vdovicheva, V.I. Shashkin. Techn. Phys., 64 (11), 1859 (2020)
- A.N. Reznik, N.K. Vdovicheva. Techn. Phys., 64 (11), 1722 (2019)
- A.N. Reznik, N.V. Vostokov. Techn. Phys., 92 (3), 408 (2022)
- S.M. Sze, K.K. Ng. Physics of Semiconductor Devices (John Wiley \& Sons, Inc., 2007)
- L.E. Dickens. IEEE Trans. Microwave Theory Techn., 15, 101 (1967)
- J.H. Lee, S. Huyn, K. Char. Rev. Sci. Instrum., 72, 1425 (2001)
- M. Golosovsky, E. Maniv, D. Davidov, A. Frenkel. IEEE Trans. Instrum. Measur., 51, 1090 (2001)
- S. Hoshina, Y. Kanai, M. Miyakawa. IEEE Trans. Magn., 37, 3311 (2001)
- D.D. Hagl, D. Popovic, S.C. Hagness, J.H. Booske, M. Okonevwski. IEEE Trans. Microwave Theory Techn., 51, 1194 (2003)
- M.A. Galin, A.N. Reznik. J. Commun. Technol. Electron., 54 (3), 259 (2009)
- W.G. Oldham, S.S. Naik. Solid-State Electron., 15, 1085 (1972)
- M. Beguwala, C.R. Crwell. Solid-State Electron., 17, 203 (1974)
- G. Vincent, D. Bois, P. Pinard. J. Appl. Phys., 46, 5173 (1975)
- J.L. Pautrat, B. Katirciogly, N. Magnea, D. Bensahel, J.C. Pfister, L. Revoil. Solid-State Electron., 23, 1159 (1980).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.