Microwave volt-impedance spectroscopy of semiconductor structure
Reznik A.N. 1, Vostokov N. V.1
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: reznik@ipmras.ru, vostokov@ipm.sci-nnov.ru

PDF
Microwave voltage-impedance spectroscopy is used to study a semiconductor structure in the form of a doped n-GaAs film grown on a conducting n^+-GaAs substrate with a buffer sublayer. A system of concentric barrier contacts is formed on the structure surface. A technique has been developed for measuring complex impedance spectrum Z(f,U) of the sample as a function of DC bias voltage U. Spectra Z(f,U) were measured using a Cascade Microtech probe station in the frequency range 0.01-40 GHz with a lateral resolution of 15-30 μm at U=0-10 V. The main electrophysical characteristics of a semiconductor film were determined from the spectra: type, concentration and mobility of free charge carriers, electrical conductivity. An excess resistance was found in the range f=0.1-20 GHz. This effect is interpreted as the deep states (traps) recharging for two types of traps - low-frequency l and high-frequency h with characteristic time tau_l=10-9 s, tau_h=4.2·10-11 s. A model description is proposed that explains the characteristic shape of the trap resistance spectrum, its dependence on the contact area and voltage U. Keywords: microwave band, near field, impedance, semiconductor, barier contact, deep states, electrophysical characteristics.
  1. S.M. Anlage, V.V. Talanov, A.R. Schwartz. Principles of Near-Field Microwave microscopy", in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, ed. by S.Kalinin and A. Gruverman (Springer Verlag, Berlin, 2007) p. 215
  2. K. Lai, W. Kundhikanjana, M.A. Kelly, Z.-X. Shen. Appl. Nanosci., 1, 13 (2011)
  3. A. Imtiaz, T.M. Wallis, P. Kabos. IEEE Micrwave Mag., 15, 52 (2014)
  4. S. Berweger, T.M. Wallis, P. Kabos. IEEE Micrwave Mag., 21, 36 (2020)
  5. A.N. Reznik, E.V. Demidov. J. Appl. Phys., 113, 094501 (2013)
  6. A.N. Reznik, S.A. Korolyov. J. Appl. Phys., 119, 094504 (2016)
  7. O. Amster, F. Stanke, S. Friedman, Y. Yang, St.J. Dixon-Warren, B. Drevniok. Microelectron. Reliab., 76--77, 214 (2017)
  8. S. Hommel, N. Killat, A. Altes, T. Schweinboeck, F. Kreupl. Microelectron. Reliab., 76--77, 221 (2017)
  9. S. Berweger, G.A. MacDonald, M. Yang, K.J. Coakley, J.J. Berry, K. Zhu, F.W. DelRio, T.M. Wallis, P. Kabos. Nano Lett., 17, 1796 (2017)
  10. A.N. Reznik, S.A. Korolyov, M.N. Drozdov. J. Appl. Phys., 121, 164503 (2017)
  11. A. Buchter, J. Hoffman, A. Delvallee, E. Brinciotti, D. Hapiuk, C. Licitra, K. Louarn, A. Arnoult, G. Almuneau, F. Piquemal, M. Zeier, F. Kienberger. Rev. Sci. Instrum., 89, 023704 (2018)
  12. S.A. Korolyov, A.N. Reznik. Rev. Sci. Instrum., 89, 023706 (2018)
  13. X. Guo, K. Bertling, A.D. Rakic. Appl. Phys. Lett., 118, 041103 (2021)
  14. X. Guo, X. He, Z. Degnan, B.C. Donose, K. Bertling, A. Fedorov, A.D. Rakic, P. Jacobson. Appl. Phys. Lett., 119, 091101 (2021)
  15. V.L. Bonch-Bruevich, S.G. Kalashnikov. Physics of Semiconductors (VEB, Berlin, 1982)
  16. A.N. Reznik, N.V. Vostokov, N.K. Vdovicheva, S.A. Korolyov, V.I. Shashkin. J. Appl. Phys., 122, 244505 (2017)
  17. A.N. Reznik, N.V. Vostokov, N.K. Vdovicheva, V.I. Shashkin. Techn. Phys., 64 (11), 1859 (2020)
  18. A.N. Reznik, N.K. Vdovicheva. Techn. Phys., 64 (11), 1722 (2019)
  19. A.N. Reznik, N.V. Vostokov. Techn. Phys., 92 (3), 408 (2022)
  20. S.M. Sze, K.K. Ng. Physics of Semiconductor Devices (John Wiley \& Sons, Inc., 2007)
  21. L.E. Dickens. IEEE Trans. Microwave Theory Techn., 15, 101 (1967)
  22. J.H. Lee, S. Huyn, K. Char. Rev. Sci. Instrum., 72, 1425 (2001)
  23. M. Golosovsky, E. Maniv, D. Davidov, A. Frenkel. IEEE Trans. Instrum. Measur., 51, 1090 (2001)
  24. S. Hoshina, Y. Kanai, M. Miyakawa. IEEE Trans. Magn., 37, 3311 (2001)
  25. D.D. Hagl, D. Popovic, S.C. Hagness, J.H. Booske, M. Okonevwski. IEEE Trans. Microwave Theory Techn., 51, 1194 (2003)
  26. M.A. Galin, A.N. Reznik. J. Commun. Technol. Electron., 54 (3), 259 (2009)
  27. W.G. Oldham, S.S. Naik. Solid-State Electron., 15, 1085 (1972)
  28. M. Beguwala, C.R. Crwell. Solid-State Electron., 17, 203 (1974)
  29. G. Vincent, D. Bois, P. Pinard. J. Appl. Phys., 46, 5173 (1975)
  30. J.L. Pautrat, B. Katirciogly, N. Magnea, D. Bensahel, J.C. Pfister, L. Revoil. Solid-State Electron., 23, 1159 (1980).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru