Double-channel heterostructure with additional digital potential barriers for high-power field-effect transistors
Bogdanov S.A.1, Karpov S.N.1, Pashkovskii A.B.1
1JSC "RPC "Istok" named after Shokin", Fryazino, Moscow oblast, Russia
Email: solidstate10@mail.ru
The first results of double-channel heterostructures with donor-acceptor doping and systems of alternating thin layers of AlAs/GaAs forming additional digital potential barriers study are presented. It is shown that due to the peculiarities of real space electron transfer in the proposed design, when the surface density of electrons with high mobility is doubled compared to traditional single-channel bilaterally doped heterostructures, even in the absence of digital barriers, the drift velocity overshot does not decrease. The introduction of digital barriers significantly increases the of electrons drift velocity overshot when they fly into the region of a strong field, bringing the drift velocity overshot in the corresponding heterostructures closer to the theoretical limit for the model used - the drift velocity overshot in the undoped bulk material of the channel. Keywords: double-channel structure, digital barriers, field-effect transistor, real space transfer. DOI: 10.61011/TPL.2023.07.56449.19591
- H. Wang, F. Wang, S. Li, T.Y. Huang, A.S. Ahmed, N.S. Mannem, J. Lee, E. Garay, D. Munzer, C. Snyder, S. Lee, H.T. Nguyen, M.E.D. Smith, Power amplifiers performance survey 2000-present [Electronic source]. URL: https://gems.ece.gatech.edu/PA_survey.html
- B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, U.K. Mishra, IEEE Trans. Electron Dev., 65 (1), 45 (2018). DOI: 10.1109/TED.2017.2770087
- Nidhi, S. Dasgupta, S. Keller, J.S. Speck, U.K. Mishra, IEEE Electron Dev. Lett., 32 (12), 1683 (2011). DOI: 10.1109/LED.2011.2168558
- Y. Tang, K. Shinohara, D. Regan, A. Corrion, D. Brown, J. Wong, A. Schmitz, H. Fung, S. Kim, M. Micovic, IEEE Electron Dev. Lett., 36 (6), 549 (2015). DOI: 10.1109/LED.2015.2421311
- V.M. Lukashin, A.B. Pashkovskii, I.V. Pashkovskaya, Tech. Phys. Lett., 49 (1), 51 (2023). DOI: 10.21883/TPL.2023.01.55349.19327
- A.A. Borisov, K.S. Zhuravlev, S.S. Zyrin, V.G. Lapin, V.M. Lukashin, A.A. Makovetskaya, V.I. Novoselets, A.B. Pashkovskii, A.I. Toropov, N.D. Ursulyak, S.V. Shcherbakov, Tech. Phys. Lett., 42 (8), 848 (2016). DOI: 10.1134/S1063785016080198.
- A.B. Pashkovskii, S.A. Bogdanov, A.K. Bakarov, A.B. Grigorenko, K.S. Zhuravlev, V.G. Lapin, V.M. Lukashin, I.A. Rogachev, E.V. Tereshkin, S.V. Shcherbakov, IEEE Trans. Electron Dev., 68 (1), 53 (2021). DOI: 10.1109/TED.2020.3038373
- N.H. Sheng, C.P. Lee, R.T. Chen, D.L. Miller, S.J. Lee, IEEE Electron Dev. Lett., 6 (6), 307 (1985). DOI: 10.1109/EDL.1985.26134
- A.B. Pashkovskii, S.A. Bogdanov, A.K. Bakarov, K.S. Zhuravlev, V.G. Lapin, V.M. Lukashin, S.N. Karpov, I.A. Rogachev, E.V. Tereshkin, Semiconductors, 57 (1), 20 (2023). DOI: 10.21883/FTP.2023.01.54926.355
- K.-Y. Chu, S.-Y. Cheng, M.-H. Chiang, Y.-J. Liu, C.-C. Huang, T.-Y. Chen, C.-S. Hsu, W.-C. Liu, W.-Y. Cheng, B.-C. Lin, Solid-State Electron., 72, 22 (2012). DOI: 10.1016/j.sse.2011.09.009
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.