Modeling of surface-volumetric charging of a dielectric irradiated by electrons with energy range from 6 to 30 keV
Zykov V. M.1, Neyman D. A.1
1Tomsk Polytechnic University, Tomsk, Russia
Email: Neyman@tpu.ru

PDF
The physico-mathematical model applied to ground tests for geomagnetic plasma exposure based on the combined consideration of surface and bulk processes of transport and charge accumulation for calculating the kinetics of charging high-resistance dielectrics irradiated by medium-energy monoenergetic electrons (from 6 to 30 keV) is proposed. The model takes into account the contribution to the charging of the dielectric by the trains of longitudinal optical phonons generated by each thermalizing primary electron with energy below the band gap of the dielectric, which supplements the induced conduction current due to the generation of electron-hole pairs. As a result, the current induced by trains of longitudinal optical phonons of the tunnel conductivity through free electron traps is introdused, as well as the current induced in the conduction band due to multiphonon ionization the electron traps by trains of longutudinal optical phonons in the region of existence of electric field. Using the example of the α-Al2O3 (sapphire) dielectric, the results of computer simulation of the internal currents distributions, charges, and electric field in the dielectric with the open surface irradiated by monoenergetic electrons with energies from 6 to 30 keV are presented according with the achievement the quasi-equilibrium in the irradiated part of the dielectric and with switching of the energy of primary electrons during the irradiation process. Keywords: dielectric, surface charging, volumetric charging, surface-volumetric model, secondary electron emission, tunnel current, phonons. DOI: 10.61011/TP.2023.06.56522.21-23
  1. M.I. Panasyuk, L.S. Novikov. Model kosmosa (KDU, M., 2007), t. 2, s. 1144. (in Russian)
  2. D.C. Ferguson, R.C. Hoffmann, E.A. Plis, D.P. Engelhart. J. Spacecraft Rockets, 55 (3), 698 (2018). DOI: 10.2514/1.A34017
  3. D.P. Engelhart, E.A. Plis, D. Ferguson, K. Artyushkova, D. Wellems, R. Cooper, R. Hoffmann. IEEE Trans. Plasma Sci., 47 (8), 3848 (2019). DOI: 10.1109/TPS.2019.2921937
  4. D. Ferguson, S. White, R. Rast, E. Holeman. IEEE Trans. Plasma Sci., 47 (8), 3834 (2019). DOI: 10.1109/TPS.2019.2922556
  5. T. Paulmier, D. Lazaro, B. Dirassen, R. Rey, J.-C. Mateo-Velez, D. Payan. IEEE Trans. Plasma Sci., 47 (8), 3776 (2019). DOI: 10.1109/TPS.2019.2922256
  6. D.C. Ferguson, R.C. Hoffmann, D.P. Engelhart, E.A. Plis. IEEE Trans. Plasma Sci., 45 (8), 1972 (2017). DOI: 10.1109/TPS.2017.2694387
  7. D. Ferguson, P. Crabtree, S. White, B. Vayner. J. Spacecraft Rockets, 53 (3), 464 (2016). DOI: 10.2514/1.A33438
  8. K.D. Cummings, M. Kiersh. J. Vac. Sci. Technol. B: Microelectron. Process. Phenom., 7 (6), 1536 (1989). DOI: 10.1116/1.584528
  9. K.T. Arat, T. Klimpel, A.C. Zonnevylle, W.S.M.M. Ketelaars, C.T.H. Heerkens, C.W. Hagen. J. Vac. Sci. Technol. B, 37 (5), 051603 (2019). DOI: 10.1116/1.5120631
  10. S. Fakhfakh, O. Jbara, S. Rondot, A. Hadjadj, J.M. Patat, Z. Fakhfakh. J. Appl. Phys., 108 (9), 093705 (2010). DOI: 10.1063/1.3499692
  11. J. Cazaux. J. Appl. Phys., 59 (5), 1418 (1986). DOI: 10.1063/1.336493
  12. X. Meyza, D. Goeuriot, C. Guerret-Piecourt, D. Treheux, H.-J. Fitting. J. Appl. Phys., 94 (8), 5384 (2003). DOI: 10.1063/1.1613807
  13. E.I. Rau, E.N. Evstaf'eva, M.V. Andrianov. Phys. Solid State, 50 (4), 621 (2008). DOI:10.1134/S1063783408040057
  14. E.I. Rau, A.A. Tatarintsev. Phys. Solid State, 63 (4), 628 (2021). DOI: 10.1134/S1063783421040181
  15. V.M. Zykov, D.A. Neyman. Russ. Phys. J., 60, 2201 (2018). DOI: 10.1007/s11182-018-1347-0
  16. H.-J. Fitting, V.S. Kortov, G. Petite. J. Lumin., 122/123, 542 (2007). DOI: 10.1016/j.jlumin.2006.01.188
  17. K.A. Nasyrov, V.A. Gritsenko. Physics-Uspekhi, 56 (10), 999 (2013). DOI: 10.3367/UFNe.0183.201310h.1099
  18. T. Hosono, K. Kato, A. Morita, H. Okubo. IEEE Trans. Dielectr. Electr. Insul., 14 (3), 627 (2007). DOI: 10.1109/TDEI.2007.369523
  19. G.M. Sessler, M.T. Figueiredo, G.F.L. Ferreira. IEEE Trans. Dielectr. Electr. Insul., 11 (2), 192 (2004). DOI: 10.1109/TDEI.2004.1285887
  20. Yu.N. Novikov, V.A. Gritsenko, K.A. Nasyrov. JETP Lett., 89 (10), 506 (2009). DOI: 10.1134/S0021364009100075
  21. B. Raftari, N.V. Budko, C. Vuik. J. Appl. Phys., 118 (20), 204101 (2015). DOI: 10.1063/1.4936201
  22. M. Belhaj, S. Odof, K. Msellak, O. Jbara. J. Appl. Phys., 88 (5), 2289 (2000). DOI: 10.1063/1.1287131
  23. S.V. Nikiforov. Dokt. diss., Ekaterinburg, Uralsky Federalny universitet imeni pervogo Presidenta Rossii B.N. Eltsin, 2016. (in Russian)
  24. J. Cazaux. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 244 (2), 307 (2006). DOI: 10.1016/j.nimb.2005.10.006
  25. J.F. Fowler. Proc. R. Soc. London A --- Math Phys. Sci., 236 (1207), 464 (1956). DOI: 10.1098/rspa.1956.0149
  26. K.A. Nasyrov, V.A. Gritsenko. J. Exp. Theor. Phys., 112, 1026 (2011). DOI: 10.1134/S1063776111040200
  27. M.E. Banda, S.L. Roy, V. Griseri, G. Teyss\`edre. J. Phys. D: Appl. Phys., 53 (8), 085503 (2019). DOI: 10.1088/1361-6463/ab5692
  28. V.A. Gritsenko, A.A. Gismatulin, A. Chin. Mater. Res. Express, 6 (3), 036304 (2019). DOI: 10.1088/2053-1591/aaf61e
  29. Yu.N. Novikov. Phys. Solid State, 55 (5), 966 (2013). DOI: 10.1134/S1063783413050272
  30. Y.N. Novikov, A.V. Vishnyakov, V.A. Gritsenko, K.A. Nasyrov, H. Wong. Microelectron. Reliab., 50 (2), 207 (2010). DOI: 10.1016/j.microrel.2009.11.004
  31. Yu.N. Novikov, A.V. Vishnyakov, V.A. Gritsenko, K.A. Nasyrov. Izvestiya RGPU im. A.I. Gertsena, (122) 46 (2010) (in Russian)
  32. K.A. Nasyrov, V.A. Gritsenko, Yu.N. Novikov, D.V. Gritsenko, D.-V. Li, Ch.V. Kim. Izvestiya RGPU im. A.I. Gertsena, 5 (13), 147 (2005). (in Russian)
  33. Yu.N. Novikov. Phys. Solid State, 47 (12), 2233 (2005). DOI: 10.1134/1.2142883
  34. K.A. Nasyrov, Yu.N. Novikov, V.A. Gritsenko, S.Y. Yoon, C.W. Kim. JETP Lett., 77, 385 (2003). DOI: 10.1134/1.1581966
  35. S.D. Ganichev, I.N. Yassievich, W. Prettl. J. Phys.: Condens. Matter., 14 (15), R1263 (2002). DOI: 10.1088/0953- 8984/14/50/201
  36. K.A. Nasyrov, V.A. Gritsenko, M.K. Kim, H.S. Chae, S.D. Chae, W.I. Ryu, J.H. Sok, J.-W. Lee, B.M. Kim. IEEE Electron Device Lett., 23 (6), 336 (2002). DOI: 10.1109/LED.2002.1004227
  37. A.F. Zatsepin, V.G. Mazurenko, V.S. Kortov, V.A. Kalentiev. FTT, 30 (11), 3472 (1988). (in Russian)
  38. V. Karpus, V.I. Perel. J. Exp. Theor. Phys., 91 (6), 2319 (1986)
  39. A. Melchinger, S. Hofmann. J. Appl. Phys., 78 (10), 6224 (1995). DOI: 10.1063/1.360569

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru