Modeling of surface-volumetric charging of a dielectric irradiated by electrons with energy range from 6 to 30 keV
Zykov V. M.1, Neyman D. A.1
1Tomsk Polytechnic University, Tomsk, Russia
Email: Neyman@tpu.ru
The physico-mathematical model applied to ground tests for geomagnetic plasma exposure based on the combined consideration of surface and bulk processes of transport and charge accumulation for calculating the kinetics of charging high-resistance dielectrics irradiated by medium-energy monoenergetic electrons (from 6 to 30 keV) is proposed. The model takes into account the contribution to the charging of the dielectric by the trains of longitudinal optical phonons generated by each thermalizing primary electron with energy below the band gap of the dielectric, which supplements the induced conduction current due to the generation of electron-hole pairs. As a result, the current induced by trains of longitudinal optical phonons of the tunnel conductivity through free electron traps is introdused, as well as the current induced in the conduction band due to multiphonon ionization the electron traps by trains of longutudinal optical phonons in the region of existence of electric field. Using the example of the α-Al2O3 (sapphire) dielectric, the results of computer simulation of the internal currents distributions, charges, and electric field in the dielectric with the open surface irradiated by monoenergetic electrons with energies from 6 to 30 keV are presented according with the achievement the quasi-equilibrium in the irradiated part of the dielectric and with switching of the energy of primary electrons during the irradiation process. Keywords: dielectric, surface charging, volumetric charging, surface-volumetric model, secondary electron emission, tunnel current, phonons. DOI: 10.61011/TP.2023.06.56522.21-23
- M.I. Panasyuk, L.S. Novikov. Model kosmosa (KDU, M., 2007), t. 2, s. 1144. (in Russian)
- D.C. Ferguson, R.C. Hoffmann, E.A. Plis, D.P. Engelhart. J. Spacecraft Rockets, 55 (3), 698 (2018). DOI: 10.2514/1.A34017
- D.P. Engelhart, E.A. Plis, D. Ferguson, K. Artyushkova, D. Wellems, R. Cooper, R. Hoffmann. IEEE Trans. Plasma Sci., 47 (8), 3848 (2019). DOI: 10.1109/TPS.2019.2921937
- D. Ferguson, S. White, R. Rast, E. Holeman. IEEE Trans. Plasma Sci., 47 (8), 3834 (2019). DOI: 10.1109/TPS.2019.2922556
- T. Paulmier, D. Lazaro, B. Dirassen, R. Rey, J.-C. Mateo-Velez, D. Payan. IEEE Trans. Plasma Sci., 47 (8), 3776 (2019). DOI: 10.1109/TPS.2019.2922256
- D.C. Ferguson, R.C. Hoffmann, D.P. Engelhart, E.A. Plis. IEEE Trans. Plasma Sci., 45 (8), 1972 (2017). DOI: 10.1109/TPS.2017.2694387
- D. Ferguson, P. Crabtree, S. White, B. Vayner. J. Spacecraft Rockets, 53 (3), 464 (2016). DOI: 10.2514/1.A33438
- K.D. Cummings, M. Kiersh. J. Vac. Sci. Technol. B: Microelectron. Process. Phenom., 7 (6), 1536 (1989). DOI: 10.1116/1.584528
- K.T. Arat, T. Klimpel, A.C. Zonnevylle, W.S.M.M. Ketelaars, C.T.H. Heerkens, C.W. Hagen. J. Vac. Sci. Technol. B, 37 (5), 051603 (2019). DOI: 10.1116/1.5120631
- S. Fakhfakh, O. Jbara, S. Rondot, A. Hadjadj, J.M. Patat, Z. Fakhfakh. J. Appl. Phys., 108 (9), 093705 (2010). DOI: 10.1063/1.3499692
- J. Cazaux. J. Appl. Phys., 59 (5), 1418 (1986). DOI: 10.1063/1.336493
- X. Meyza, D. Goeuriot, C. Guerret-Piecourt, D. Treheux, H.-J. Fitting. J. Appl. Phys., 94 (8), 5384 (2003). DOI: 10.1063/1.1613807
- E.I. Rau, E.N. Evstaf'eva, M.V. Andrianov. Phys. Solid State, 50 (4), 621 (2008). DOI:10.1134/S1063783408040057
- E.I. Rau, A.A. Tatarintsev. Phys. Solid State, 63 (4), 628 (2021). DOI: 10.1134/S1063783421040181
- V.M. Zykov, D.A. Neyman. Russ. Phys. J., 60, 2201 (2018). DOI: 10.1007/s11182-018-1347-0
- H.-J. Fitting, V.S. Kortov, G. Petite. J. Lumin., 122/123, 542 (2007). DOI: 10.1016/j.jlumin.2006.01.188
- K.A. Nasyrov, V.A. Gritsenko. Physics-Uspekhi, 56 (10), 999 (2013). DOI: 10.3367/UFNe.0183.201310h.1099
- T. Hosono, K. Kato, A. Morita, H. Okubo. IEEE Trans. Dielectr. Electr. Insul., 14 (3), 627 (2007). DOI: 10.1109/TDEI.2007.369523
- G.M. Sessler, M.T. Figueiredo, G.F.L. Ferreira. IEEE Trans. Dielectr. Electr. Insul., 11 (2), 192 (2004). DOI: 10.1109/TDEI.2004.1285887
- Yu.N. Novikov, V.A. Gritsenko, K.A. Nasyrov. JETP Lett., 89 (10), 506 (2009). DOI: 10.1134/S0021364009100075
- B. Raftari, N.V. Budko, C. Vuik. J. Appl. Phys., 118 (20), 204101 (2015). DOI: 10.1063/1.4936201
- M. Belhaj, S. Odof, K. Msellak, O. Jbara. J. Appl. Phys., 88 (5), 2289 (2000). DOI: 10.1063/1.1287131
- S.V. Nikiforov. Dokt. diss., Ekaterinburg, Uralsky Federalny universitet imeni pervogo Presidenta Rossii B.N. Eltsin, 2016. (in Russian)
- J. Cazaux. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 244 (2), 307 (2006). DOI: 10.1016/j.nimb.2005.10.006
- J.F. Fowler. Proc. R. Soc. London A --- Math Phys. Sci., 236 (1207), 464 (1956). DOI: 10.1098/rspa.1956.0149
- K.A. Nasyrov, V.A. Gritsenko. J. Exp. Theor. Phys., 112, 1026 (2011). DOI: 10.1134/S1063776111040200
- M.E. Banda, S.L. Roy, V. Griseri, G. Teyss\`edre. J. Phys. D: Appl. Phys., 53 (8), 085503 (2019). DOI: 10.1088/1361-6463/ab5692
- V.A. Gritsenko, A.A. Gismatulin, A. Chin. Mater. Res. Express, 6 (3), 036304 (2019). DOI: 10.1088/2053-1591/aaf61e
- Yu.N. Novikov. Phys. Solid State, 55 (5), 966 (2013). DOI: 10.1134/S1063783413050272
- Y.N. Novikov, A.V. Vishnyakov, V.A. Gritsenko, K.A. Nasyrov, H. Wong. Microelectron. Reliab., 50 (2), 207 (2010). DOI: 10.1016/j.microrel.2009.11.004
- Yu.N. Novikov, A.V. Vishnyakov, V.A. Gritsenko, K.A. Nasyrov. Izvestiya RGPU im. A.I. Gertsena, (122) 46 (2010) (in Russian)
- K.A. Nasyrov, V.A. Gritsenko, Yu.N. Novikov, D.V. Gritsenko, D.-V. Li, Ch.V. Kim. Izvestiya RGPU im. A.I. Gertsena, 5 (13), 147 (2005). (in Russian)
- Yu.N. Novikov. Phys. Solid State, 47 (12), 2233 (2005). DOI: 10.1134/1.2142883
- K.A. Nasyrov, Yu.N. Novikov, V.A. Gritsenko, S.Y. Yoon, C.W. Kim. JETP Lett., 77, 385 (2003). DOI: 10.1134/1.1581966
- S.D. Ganichev, I.N. Yassievich, W. Prettl. J. Phys.: Condens. Matter., 14 (15), R1263 (2002). DOI: 10.1088/0953- 8984/14/50/201
- K.A. Nasyrov, V.A. Gritsenko, M.K. Kim, H.S. Chae, S.D. Chae, W.I. Ryu, J.H. Sok, J.-W. Lee, B.M. Kim. IEEE Electron Device Lett., 23 (6), 336 (2002). DOI: 10.1109/LED.2002.1004227
- A.F. Zatsepin, V.G. Mazurenko, V.S. Kortov, V.A. Kalentiev. FTT, 30 (11), 3472 (1988). (in Russian)
- V. Karpus, V.I. Perel. J. Exp. Theor. Phys., 91 (6), 2319 (1986)
- A. Melchinger, S. Hofmann. J. Appl. Phys., 78 (10), 6224 (1995). DOI: 10.1063/1.360569
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.