Flow structure and heat transfer in a gas-droplet flow behind a sudden channel constriction
Pakhomov M.A.1, Terekhov V.I.1
1Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: pakhomov@ngs.ru

PDF
The numerical study of the local flow structure and heat transfer in a gas-droplet turbulent flow behind a forward-facing step in the two-phase gas-droplet flow is carried out. Two-dimensional steady-state Reynolds-averaged Navier-Stokes (RANS) equations are used for the numerical solution. They were written taking into account the presence of a dispersed phase. The Eulerian two-fluid approach is used to describe the flow dynamics and heat and mass transfer in the gaseous and dispersed phases. The turbulence of the carrier phase was described using an elliptical model for the transport of Reynolds stress components, taking into account the presence of droplets. The effect of evaporating droplets flowing after the forward-facing step on the local flow structure, turbulence, distribution of the dispersed phase, and heat transfer inetensification is analyzed. Keywords: numerical simulation, Reynolds stress transport model, turbulence, heat transfer. DOI: 10.61011/TP.2023.06.56524.23-23
  1. E.K. Kalinin, G.A. Dreitser, S.A. Yarkho. Intensifikatsiya teploobmena v kanalakh (Mashinostroenie, M., 1990) )in Russian)
  2. Yu.F. Gortyshov, I.A. Popov, V.V. Olimpiyev, A.V. Shchelchkov, S.I. Kaskov. Teplogidravlicheskaya effektivnost perspektivnykh sposobov intensifikatsii teplootdachi v kanalakh teploobmennogo oborudovaniya. Intensifikatsiya teploobmena (Tsentr innovatsionnykh tekhnologiy, Kazan, 2009) (in Russian)
  3. V.I. Terekhov, T.V. Bogatko, A.Yu. Dyachenko, Ya.I. Smulsky, N.I. Yarygina. Heat Transfer in Subsonic Separated Flows (Springer, Cham, 2021)
  4. Yu.A. Bystrov, S.A. Isaev, N.A. Kudryavtsev, A.I. Leont'ev, Chislennoe modelirovanie vikhrevoi intensifikatsii teploobmena v paketakh trub (Sudostroenie, SPb., 2005) (in Russian)
  5. A.M. Levchenya, E.M. Smirnov, S.N. Trunova. Tech. Phys. Lett., 48 (3), 40, (2022). DOI: 10.21883/PJTF.2022.03.51984.19020
  6. V.E. Alemasov, G.A. Glebov, A.P. Kozlov. Termoanemometricheskie metody issledovaniya otryvnykh techeniy (Izd-vo Kazanskogi f-la AN sssR, Kazan, 1989) (in Russian)
  7. R.L. Simpson. Progress Aerospace Sci., 32 (5), 457 (1996). DOI: 10.1016/0376-0421(95)00012-7
  8. T. Ota. Appl. Mech. Rev., 53 (8), 219 (2000). DOI: 10.1115/1.3097351
  9. V.I. Terekhov. Energies, 14 (4), 1005 (2021). DOI: 10.3390/en14041005
  10. W.D. Moss, S. Baker. Aero Quart., 31 (3), 151 (1980). DOI: 10.1017/S0001925900008878
  11. M. Raisee, S.H. Hejazi. Int. J. Heat Fluid Flow, 28 (3), 429 (2007). DOI: 10.1016/j.ijheatfluidflow.2006.07.004
  12. A. Graziani, M. Lippert, D. Uystepruyst, L. Keirsbulck. Int. J. Heat Fluid Flow, 67, part A, 220 (2017). DOI: 10.1016/j.ijheatfluidflow.2017.08.009
  13. K. Hishida, T. Nagayasu, M. Maeda. Int. J. Heat Mass Transfer, 38 (10) 1773 (1995). DOI: 10.1016/0017-9310(94)00308-I
  14. M.A. Pakhomov, V.I. Terekhov. Water, 13 (17), 2333, (2021). DOI: 10.3390/w13172333
  15. K.-T. Huang, Y.-H. Liu. Energies, 12 (19), Paper 3785 (2019). DOI: 10.3390/en12193785
  16. M.A. Pakhomov, V.I. Terekhov. Flow, Turbulence, Combust., 98 (1), 341 (2017). DOI: 10.1007/s10494-016-9732-7
  17. M.A. Pakhomov, V.I. Terekhov. Tech. Phys., 58 (2), 185 (2013). DOI: 10.1134/S1063784213020187
  18. M.A. Pakhomov, V.I. Terekhov. Pisma v ZhTF, 49 (7), 16 (2023) (in Russian)
  19. L.I. Zaichik. Phys. Fluids, 11(6), 1521 (1999). DOI: 10.1063/1.870015
  20. R.V. Mukin, L.I. Zaichik. Int. J. Heat Fluid Flow, 33 (1), 81 (2012). DOI: 10.1016/j.ijheatfluidflow.2011.11.002
  21. A. Fadai-Ghotbi, R. Manceau, J. Boree. Flow, Turbulence Combust., 81 (3) 395 (2008). DOI: 10.1007/s10494-008-9140-8
  22. N. Beishuizen, B. Naud, D. Roekaerts. Flow, Turbulence Combust., 79 (3), 321 (2007). DOI: 10.1007/s10494-007-9090-6
  23. B.P. Leonard. Comput. Methods Appl. Mech. Eng., 19 (1), 59 (1979). DOI: 10.1016/0045-7825(79)90034-3
  24. J.P. Van Doormaal, G.D. Raithby. Numer. Heat Transfer, pt. A, 7 (2), 147 (1984). DOI: 10.1080/01495728408961817
  25. J.R. Fessler, J.K. Eaton. J. Fluid Mech., 314, 97 (1999). DOI: 10.1017/S0022112099005741
  26. Y.H. Wu, H.Y. Ren. Phys. Fluids, 23 (4), 045102 (2011). DOI: 10.1063/1.3576911
  27. X.J. Fang, M.F. Tachie, D.J. Bergstrom. Int. J. Heat Fluid Flow, 87, 108753 (2021). DOI: 10.1016/j.ijheatfluidflow.2020.108753

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru