Flow structure and heat transfer in a gas-droplet flow behind a sudden channel constriction
Pakhomov M.A.1, Terekhov V.I.1
1Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: pakhomov@ngs.ru
The numerical study of the local flow structure and heat transfer in a gas-droplet turbulent flow behind a forward-facing step in the two-phase gas-droplet flow is carried out. Two-dimensional steady-state Reynolds-averaged Navier-Stokes (RANS) equations are used for the numerical solution. They were written taking into account the presence of a dispersed phase. The Eulerian two-fluid approach is used to describe the flow dynamics and heat and mass transfer in the gaseous and dispersed phases. The turbulence of the carrier phase was described using an elliptical model for the transport of Reynolds stress components, taking into account the presence of droplets. The effect of evaporating droplets flowing after the forward-facing step on the local flow structure, turbulence, distribution of the dispersed phase, and heat transfer inetensification is analyzed. Keywords: numerical simulation, Reynolds stress transport model, turbulence, heat transfer. DOI: 10.61011/TP.2023.06.56524.23-23
- E.K. Kalinin, G.A. Dreitser, S.A. Yarkho. Intensifikatsiya teploobmena v kanalakh (Mashinostroenie, M., 1990) )in Russian)
- Yu.F. Gortyshov, I.A. Popov, V.V. Olimpiyev, A.V. Shchelchkov, S.I. Kaskov. Teplogidravlicheskaya effektivnost perspektivnykh sposobov intensifikatsii teplootdachi v kanalakh teploobmennogo oborudovaniya. Intensifikatsiya teploobmena (Tsentr innovatsionnykh tekhnologiy, Kazan, 2009) (in Russian)
- V.I. Terekhov, T.V. Bogatko, A.Yu. Dyachenko, Ya.I. Smulsky, N.I. Yarygina. Heat Transfer in Subsonic Separated Flows (Springer, Cham, 2021)
- Yu.A. Bystrov, S.A. Isaev, N.A. Kudryavtsev, A.I. Leont'ev, Chislennoe modelirovanie vikhrevoi intensifikatsii teploobmena v paketakh trub (Sudostroenie, SPb., 2005) (in Russian)
- A.M. Levchenya, E.M. Smirnov, S.N. Trunova. Tech. Phys. Lett., 48 (3), 40, (2022). DOI: 10.21883/PJTF.2022.03.51984.19020
- V.E. Alemasov, G.A. Glebov, A.P. Kozlov. Termoanemometricheskie metody issledovaniya otryvnykh techeniy (Izd-vo Kazanskogi f-la AN sssR, Kazan, 1989) (in Russian)
- R.L. Simpson. Progress Aerospace Sci., 32 (5), 457 (1996). DOI: 10.1016/0376-0421(95)00012-7
- T. Ota. Appl. Mech. Rev., 53 (8), 219 (2000). DOI: 10.1115/1.3097351
- V.I. Terekhov. Energies, 14 (4), 1005 (2021). DOI: 10.3390/en14041005
- W.D. Moss, S. Baker. Aero Quart., 31 (3), 151 (1980). DOI: 10.1017/S0001925900008878
- M. Raisee, S.H. Hejazi. Int. J. Heat Fluid Flow, 28 (3), 429 (2007). DOI: 10.1016/j.ijheatfluidflow.2006.07.004
- A. Graziani, M. Lippert, D. Uystepruyst, L. Keirsbulck. Int. J. Heat Fluid Flow, 67, part A, 220 (2017). DOI: 10.1016/j.ijheatfluidflow.2017.08.009
- K. Hishida, T. Nagayasu, M. Maeda. Int. J. Heat Mass Transfer, 38 (10) 1773 (1995). DOI: 10.1016/0017-9310(94)00308-I
- M.A. Pakhomov, V.I. Terekhov. Water, 13 (17), 2333, (2021). DOI: 10.3390/w13172333
- K.-T. Huang, Y.-H. Liu. Energies, 12 (19), Paper 3785 (2019). DOI: 10.3390/en12193785
- M.A. Pakhomov, V.I. Terekhov. Flow, Turbulence, Combust., 98 (1), 341 (2017). DOI: 10.1007/s10494-016-9732-7
- M.A. Pakhomov, V.I. Terekhov. Tech. Phys., 58 (2), 185 (2013). DOI: 10.1134/S1063784213020187
- M.A. Pakhomov, V.I. Terekhov. Pisma v ZhTF, 49 (7), 16 (2023) (in Russian)
- L.I. Zaichik. Phys. Fluids, 11(6), 1521 (1999). DOI: 10.1063/1.870015
- R.V. Mukin, L.I. Zaichik. Int. J. Heat Fluid Flow, 33 (1), 81 (2012). DOI: 10.1016/j.ijheatfluidflow.2011.11.002
- A. Fadai-Ghotbi, R. Manceau, J. Boree. Flow, Turbulence Combust., 81 (3) 395 (2008). DOI: 10.1007/s10494-008-9140-8
- N. Beishuizen, B. Naud, D. Roekaerts. Flow, Turbulence Combust., 79 (3), 321 (2007). DOI: 10.1007/s10494-007-9090-6
- B.P. Leonard. Comput. Methods Appl. Mech. Eng., 19 (1), 59 (1979). DOI: 10.1016/0045-7825(79)90034-3
- J.P. Van Doormaal, G.D. Raithby. Numer. Heat Transfer, pt. A, 7 (2), 147 (1984). DOI: 10.1080/01495728408961817
- J.R. Fessler, J.K. Eaton. J. Fluid Mech., 314, 97 (1999). DOI: 10.1017/S0022112099005741
- Y.H. Wu, H.Y. Ren. Phys. Fluids, 23 (4), 045102 (2011). DOI: 10.1063/1.3576911
- X.J. Fang, M.F. Tachie, D.J. Bergstrom. Int. J. Heat Fluid Flow, 87, 108753 (2021). DOI: 10.1016/j.ijheatfluidflow.2020.108753
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.