Microstructure and properties of polycrystalline diamond coatings synthesized by HFCVD at high methane concentrations
Mitulinsky A. S.1, Gaydaychuk A. V.1, Zenkin S. P.1, Bulakh V. A.1, Linnik S. A.1
1Tomsk Polytechnic University, Tomsk, Russia
Email: mitulinsky@tpu.ru, gaydaychuk@tpu.ru, zen@tpu.ru, vladabulakh@tpu.ru, linniksa@tpu.ru
In this paper we present the results of experimental studies of the dependence of the structure and mechanical properties of diamond films grown by HFCVD method in an H2/CH4 atmosphere on variations in the methane concentration (from 5.6 to 19.3 vol.%). Films synthesized at 5.6 vol.% CH4 have a columnar microcrystalline structure. The microstructure of films grown at high methane contents (12.2-19.3 vol.%) contains both individual diamond crystals and dendritic clusters, the calculated values of the crystal sizes of such films are ~5 nm. Depending on the deposition parameters, the hardness and elastic modulus of diamond films varied from 50.4 and 520 GPa to 95.15 and 974.5 GPa, respectively. With an increase in the CH4 concentration during deposition, an increase in residual tensile stresses occurs. In addition, the dependence of residual stresses on the film thickness is presented. Ultrananocrystalline coatings have, on average, order of magnitude lower values of surface roughness than microcrystalline ones; in all films, an increase in roughness is observed with an increase in their thickness. Keywords: thin films, chemical vapor deposition, ultrananocrystalline diamond. DOI: 10.61011/TP.2023.06.56528.2-23
- E. Wilks, J. Wilks, Properties and Applications of Diamond (Butterworth-Heinemann, Oxford, 1994)
- R.S. Balmer, J.R. Brandon, S.L. Clewes, H.K. Dhillon, J.M. Dodson, I. Friel, P.N. Inglis, T.D. Madgwick, M.L. Markham, T.P. Mollart, N. Perkins, G.A. Scarsbrook, D.J. Twitchen, A.J. Whitehead, J.J. Wilman, S.M. Woollard. J. Phys.: Condensed Matter., 21 (36), 364221 (2009). DOI: 10.1088/0953-8984/21/36/364221
- S.E. Coe, R.S. Sussmann. Diamond and Related Mater., 9, 1726 (2000). DOI: 10.1016/S0925-9635(00)00298-3
- T.A. Scott. Adv. Appl. Ceramics, 117 (3), 161 (2017). DOI: 10.1080/17436753.2017.1389462
- S.E. Grillo, J.E. Field. Wear, 254 (10), 945 (2003). DOI: 10.1016/S0043-1648(03)00297-7
- I.P. Hayward, I.L. Singer, L.E. Seitzman. Wear, 157 (2), 215 (1992). DOI: 10.1016/0043-1648(92)90063-E
- H. Sein, W. Ahmed, M. Jackson, R. Woodwards, R. Polini. Thin Solid Films, 447, 455 (2003). DOI: 10.1016/j.tsf.2003.08.044
- G. Zhao, Z. Li, M. Hu, L. Li, N. He, M. Jamil. Diamond and Related Mater., 100, 107589 (2019). DOI: 10.1016/j.diamond.2019.107589
- F.A. Almeida, J. Sacramento, F.J. Oliveria, R.F. Silva. Surf. Coatings Technol., 203, 271 (2008). DOI: 10.1016/j.surfcoat.2008.08.075
- O. Auciello, A.V. Sumant. Diamond and Related Mater., 19, 699 (2010). DOI: 10.1016/j.diamond.2010.03.015
- D. Guo, N. Cai, G. Wu, F. Xie, S. Tan, N. Jiang, H. Li. Appl. Sci., 10 (17), 6090 (2020). DOI: 10.3390/app10176090
- R.J. Nemanich, J.A. Carlisle, A. Hirata, K. Haenen. MRS Bulletin, 39 (6), 490 (2014). DOI: 10.1557/mrs.2014.97
- A. Gicquel, K. Hassouni, F. Silva, J. Achard. Current Appl. Phys., 1 (6), 479 (2001). DOI: 10.1016/S1567-1739(01)00061-X
- C.J. Widmann, W. Muller-Sebert, N. Lang, C.E. Nebel. Diamond and Related Mater., 64, 1 (2016). DOI: 10.1016/j.diamond.2015.12.016
- X. Jia, N. Huang, Y. Guo, L. Liu, P. Li, Z. Zhai, B. Yang, Z. Yuan, D. Shi, X. Jiang. J. Mater. Sci. Technol., 34 (12), 2398 (2018). DOI: 10.1016/j.jmst.2018.04.021
- O. Auciello. Functional Diamond, 2 (1), 1 (2022). DOI: 10.1080/26941112.2022.2033606
- M. Salgado-Meza, G. Marti nez-Rodri guez, P. Tirado-Cantu, E.E. Montijo-Valenzuela, R. Garcia-Gutierrez. Appl. Sci., 11 (18), 8443 (2021). DOI: 10.3390/app11188443
- R. Rani, K. Panda, N. Kumar, A.T. Kozakov, V.I. Kolesnikov, A.V. Sidashov, I-N. Lin. Scientific Reports, 8 (1), 283 (2018). DOI: 10.1038/s41598-017-18425-4
- G. Yan, Y. Wu, D. Cristea, L. Liu, M. Tierean, Y. Wang, F. Lu, H. Wang, Z. Yuan, D. Munteanu, D. Zhao. Appl. Surf. Sci., 494, 401 (2019). DOI: 10.1016/j.apsusc.2019.07.110
- M. Mohr, A. Caron, P. Herbeck-Engel, R. Bennewitz, P. Gluche, K. Bruhne, H.-J. Fecht. J. Appl. Phys., 116, 124308, (2014). DOI: 10.1063/1.4896729
- M. Wiora, K. Bruhne, A. Floter, P. Gluche, T.M. Willey, S.O. Kucheyev, A.W. Van Buuren, A.V. Hamza, J. Biener, H.-J. Fecht. Diamond and Related Mater., 18 (5-8), 927 (2009). DOI: 10.1016/j.diamond.2008.11.026
- A.V. Sumant, O. Auciello, A. Krauss, D.M. Gruen, D. Ersoy, J. Tucek, A. Jayatissa, E.A. Stach, N. Moldovan, D.C. Mancini, H.-G. Busmann, E.M. Meyer, Mater. Res. Society Sympos. Proceed. Materi. Res. Society, 657 (2000). DOI: 10.1557/PROC-657-EE5.33
- B. Shen, Q. Lin, S. Chen, Z. Ji, Z. Huang, Z. Zhang. Surf. Coatings Technol., 378, 124999 (2019). DOI: 10.1016/j.surfcoat.2019.124999
- E. Salgueiredo, M. Amaral, F.A. Almeida, A.J.S. Fernandes, F.J. Oliveira, R.F. Silva. Surf. Coatings Technol., 236, 380 (2013). DOI: 10.1016/j.surfcoat.2013.10.017
- E.L.H. Thomas, G.W. Nelson, S. Mandal, J.S. Foord, O.A. Williams. Carbon, 68, 473 (2014). DOI: 10.1016/j.carbon.2013.11.023
- H. Wang, C. Wang, X. Wang, F. Sun. Surf. Coatings Technol., 409, 126839 (2021). DOI: 10.1016/j.surfcoat.2021.126839
- R. Zhang, Y. Zheng, J. Liu, C. Li, C. Chen, X. Hu, J. Li, R. Liu, H. Ye. Functional Diamond, 2 (1), 204 (2022). DOI: 10.1080/26941112.2022.2157225
- S. Tipawan Khlayboonme, Warawoot Thowladda. Key Engineer. Mater., 831, 127 (2020). DOI: 10.4028/www.scientific.net/KEM.831.127
- M. Mertens, I.-N. Lin, D. Manoharan, A. Moeinian, K. Bruhne, H.J. Fecht. AIP Adv., 7, 015312 (2017). DOI: 10.1063/1.4975226
- V.S. Sedov, A.K. Martyanov, A.A. Khomich, S.S. Savin, E.V. Zavedeev, V.G. Ralchenko. Diamond and Related Mater., 109, 108072 (2020). DOI: 10.1016/j.diamond.2020.108072
- Q. Lin, S. Chen, Z. Ji, Z. Huang, Z. Zhang, B. Shen. Surf. Coatings Technol., 419, 127280 (2021). DOI: 10.1016/j.surfcoat.2021.127280
- O.A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa, K. Haenen, R.B. Jackman. Diamond and Related Mater., 17 (7-10), 1080 (2008) DOI: 10.1016/j.diamond.2008.01.103
- K.J. Sankaran, J. Kurian, H.C. Chen, C.L. Dong, C.Y. Lee, N.H. Tai1, I.N. Lin. J. Phys. D: Appl. Phys., 45 (36), 365303 (2012). DOI: 10.1088/0022-3727/45/36/365303
- E. Amonoo, V. Jha, T. Thornton, F.A. Koeck, R.J. Nemanich, T.L. Alford, Diamond and Related Mater., 135, 109832 (2023). DOI: 10.1016/j.diamond.2023.109832
- R.W. Thoka, S.J. Moloi, S.C. Ray, W.F. Pong, I.-N. Lin. J. Electron Spectr. Related Phenomena, 242, 146968 (2020). DOI: 10.1016/j.elspec.2020.146968
- B.-K. Song, H.-Y. Kim, K.-S. Kim, J.-W. Yang, N.-M. Hwang. Materials, 14 (2), 426 (2021). DOI: 10.3390/ma14020426
- J.-W. Park, K.-S. Kim, N.-M. Hwang. Carbon, 106, 289 (2016). DOI: 10.1016/j.carbon.2016.05.035
- A. Zolotukhin, P.G. Kopylov, R.R. Ismagilov, A.N. Obraztsov. Diamond and Related Mater., 19 (7-9), 1007 (2010). DOI: 10.1016/j.diamond.2010.03.005
- A.A. Zolotukhin, M.A. Dolganov, A.N. Obraztsov. Diamond and Related Mater., 37, 64 (2013). DOI: 10.1016/j.diamond.2013.04.003
- H. Zeng, N. Moldovan, G. Catausan. Diamond and Related Mater. 91, 165 (2019). DOI: 10.1016/j.diamond.2018.11.016
- A. van der Drift. Phillips Research Reports, 21, 267 (1967)
- H. Kuzmany, R. Pfeiffer, N. Salk, B. Gunther. Carbon, 42 (5-6), 911 (2004). DOI: 10.1016/j.carbon.2003.12.045
- S. Prawer, K.W. Nugent, D.N. Jamieson, J.O. Orwa, L.A. Bursill, J.L. Peng. Chem. Phys. Lett., 332 (1-2), 93 (2000). DOI: 10.1016/S0009-2614(00)01236-7
- S. Prawer, R.J. Nemanich. Raman Spectroscopy of Diamond and Doped Diamond, Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 362 (1824), 2537 (2004). DOI: 10.1098/rsta.2004.1451
- A.C. Ferrari, J. Robertson. Phys. Rev. B, 61 (20), 14095 (2000). DOI: 10.1103/PhysRevB.61.14095
- D.S. Knight, W.B. White. J. Mater. Res., 4, 385 (1989). DOI: 10.1557/JMR.1989.0385
- P.C. Redfern, D.A. Horner, L.A. Curtiss, D.M. Gruen. J. Phys. Chem., 100, 11654 (1996). DOI: 10.1021/jp953165g
- J. Birrell, J.E. Gerbi, O. Auciello, J.M. Gibson, J. Johnson, J.A. Carlisle. Diamond and Related Mater., 14 (1), 86 (2005). DOI: 10.1016/j.diamond.2004.07.012
- F. Klauser, D. Steinmuller-Nethl, R. Kaindl, E. Bertel, N. Memmel. Chem. Vapor Deposition, 16 (4-6), 127 (2010). DOI: 10.1002/cvde.200906827
- A. Heiman, E. Lakin, E. Zolotoyabko, A. Hoffman. Diamond and Related Mater., 11 (3), 601 (2002). DOI: 10.1016/S0925-9635(01)00631-8
- J.L. Lyu, S.-L. Wang, W. Bo, K. Nishimura, N. Jiang. Surf. Engineer., 35 (1), 1 (2018). DOI: 10.1080/02670844.2018.1447270
- Q.L. Wei, X.B. Yue, X.Y. Li, B. Liu, X.F. Zhang, D.J. Lei, Adv. Mater. Res., 1120-1121, 378 (2015). DOI: 10.4028/www.scientific.net/AMR.1120-1121.378
- J. Blazek, J. Musil, P. Stupka, R. Cerstvy, J. Houska. Appl. Surf. Sci., 258 (5), 1762 (2011). DOI: 10.1016/j.apsusc.2011.10.039
- J. Musil. Surf. Coat. Technol., 207, 50 (2012). DOI: 10.1016/j.surfcoat.2012.05.073
- B. Bhushan, X. Li. J. Mater. Res., 12 (1), 54 (1997). DOI: 10.1557/JMR.1997.0010
- M.A. Hopcroft, W.D. Nix, T.W. Kenny. J. Microelectromechan. Systems, 19 (2), 229 (2010). DOI: 10.1109/JMEMS.2009.2039697
- C.A. Klein, G.F. Cardinale. Diamond and Related Mater., 2 (5-7), 918 (1993). DOI: 10.1016/0925-9635(93)90250-6
- W. Kulisch, C. Popov, T. Sasaki, L. Sirghi, H. Rauscher, F. Rossi, J.P. Reithmaier. Phys. Status Solidi (A) Applications and Mater., 208 (1), 70 (2011). DOI: 10.1002/pssa.201026066
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.