Physics of the Solid State
Volumes and Issues
Medium-density amorphous ice obtained by decay of water-helium gel
Sinitsyn V. V. 1,2, Rybchenko O. G.1,2, Efimov V. B.1, Viryus A. A.3
1Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
2National Research University Higher School of Economics, Moscow, Russia
3Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Russia
Email: sinitsyn@issp.ac.ru, orybch@issp.ac.ru, efimov@issp.ac.ru, mukhanova@iem.ac.ru

PDF
The article presents experimental studies of structural changes that occur during heating of nanosized powders of amorphous ice obtained by decay of a water-helium gel. Thermal annealing of the obtained samples was carried out by short exposures (about 15 minutes) at different temperatures in the range of 110-230 K. The behavior of the amorphous phase during annealing was analyzed within the framework of its description by a mixture of amorphous ices of low and medium density (LDA and MDA, respectively). It was found that at the such description, the virgin sample was predominantly in the MDA state, while the proportion of the LDA phase was about 7 times less (MDA/LDA~7:1). It has been established that during annealing, a multistage process of structural transformations of the initial LDA+MDA sample takes place: from initial changes in the amorphous state at 110 K through crystallization of the cubic ice phase Ic with its intensive growth at a temperature of 130 K to the transformation of cubic ice into the hexagonal phase Ih in the temperature range T=135-230 K. Keywords: ice, amorphous state, crystallization, medium density amorphous ice, impurity-helium gels, X-ray diffraction analysis. DOI: 10.61011/PSS.2023.08.56569.103
  1. E.F. Burton, W.F. Oliver. Proc. R. Soc. Lond. A 153, 166 (1935)
  2. P. Bruggeller, E. Mayer. Nature 288, 569 (1980)
  3. G.P. Johari, A. Hallbrucker, E. Mayer. Nature 330, 552 (1987)
  4. G.P. Johari, A. Hallbrucker, E. Mayer. Science 273, 90 (1996)
  5. A. Hallbrucker, E. Mayer, G.P. Johari. Phil. Mag. B 60, 179 (1989)
  6. J.P. Johari, A. Hallbrucker, E. Mayer. J. Chem. Phys. 92, 6742 (1990)
  7. A. Hallbrucker, E. Mayer, G.P. Johari. J. Chem. Phys. 93, 4986 (1989)
  8. I. Kohl, L. Bachmann, A. Hallbrucker, E. Mayera, T. Loerting. Phys. Chem. Chem. Phys. 7, 3210 (2005)
  9. O. Mishima, L.D. Calvert, E. Whalley. Nature 310, 393 (1984)
  10. E. Whalley. J. Less-Common Met. 140, 361 (1988)
  11. O. Mishima, L.D. Calvert, E. Whalley. Nature 314, 76 (1985)
  12. D.D. Klug, Y.P. Handa, J.S. Tse, E. Whalley. J. Chem. Phys. 90, 2390 (1989)
  13. A.M. Balagurov, O.I. Barkalov, A.I. Kolesnikov, G.M. Mironova, E.G. Ponyatovskii, V.V. Sinitsyn, V.K. Fedotov. JETP Lett. 53, 30 (1991)
  14. V.V. Sinitsyn, A.I. Kolesnikov. High Press. Res. 9, 225 (1991)
  15. Koichiro Umemoto, Renata M. Wentzcovitch. Phys. Rev. B 69, 180103 (2004)
  16. O. Mishima. Proc. Jpn. Acad. B 86, 165 (2010)
  17. M.C. Bellissent-Funel, L. Bosio, A. Hallbrucker, E. Mayer, R. Sridi-Dorbez. J. Chem. Phys. 97, 1282 (1992)
  18. T. Loerting, N. Giovambattista. J. Phys.: Condens. Matter. 18, R919 (2006)
  19. T. Loerting, K. Winkel, M. Seidl, M. Bauer, Ch. Mitterdorfer, Ph.H. Handle, Ch.G. Salzmann, E. Mayer, J.L. Finney, D.T. Bowron. Phys. Chem. Chem. Phys. 13, 8783 (2011)
  20. O. Mishima. J. Chem. Phys. 100, 5910 (1994)
  21. O.V. Stalgorova, E.L. Gromnitskaya, V.V. Brazhkin, A.G. Dyapin. Pis'ma v ZhETF 69, 9, 653 (1999). (in Russian)
  22. E.L. Gromnitskaya, A.G. Dyapin, O.V. Stalgorova, I.V. Danilov, V.V. Brazhkin. Pis'ma v ZhETF 96, 12, 879 (2012). (in Russian)
  23. R.J. Nelmes, John S. Loveday, Thierry Strassle, Craig L. Bull, Malcolm Guthrie, Gerard Hamel, Stefan Klotz. Nature Phys. 2, 414 (2006)
  24. T. Loerting, C. Salzmann, I. Kohl, E. Mayer, A. Hallbrucker. Phys. Chem. Chem. Phys. 3, 5355 (2001)
  25. Alexander Rosu-Finsen, Michael B. Davies, Alfred Amon, Han Wu, Andrea Sella, Angelos Michaelides, Christoph G. Salzmann. Science 379, 474 (2023)
  26. M.S. Elsaesser, K. Winkel, E. Mayer, T. Loerting. Phys. Chem. Chem. Phys. 12, 708 (2010)
  27. T. Loerting, C. Salzmann, I. Kohl, E. Mayer, A. Hallbrucker. Phys. Chem. Chem. Phys. 3, 5355 (2001)
  28. Ph. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L.Angstrem. Naslund, T.K. Hirsch, L. Ojamae, P. Glatzel, L.G.M. Pettersson, A. Nilsson. Science 304, 995 (2004)
  29. C. Huang, K.T. Wikfeldt, T. Tokushima, D. Nordlund, Y. Harada, U. Bergmann, M. Niebuhr, T.M. Weiss, Y. Horikawa, M. Leetmaa, M.P. Ljungberg, O. Takahashi, A. Lenz, L. Ojamae, A.P. Lyubartsev, S. Shin, L.G.M. Pettersson, A. Nilsson. PNAS 106, 15214 (2009)
  30. V. Efimov, L. Mezhov-Deglin. Patent N 2399581 (2010)
  31. V.B. Efimov, L.P. Mezhov-Deglin, C.D. Dewhurst, A.V. Lokhov, V.V. Nesvizhevsky. Physics ID 808212 (2015). (http://dx.doi.org/10.1155/2015/808212)
  32. L.P. Mezhov-Deglin. Phys.-Usp. 48, 1061 (2005)
  33. V. Efimov, A. Izotov, L. Mezhov-Deglin, V. Nesvizhevskii, O. Rybchenko, A. Zimin. Low Temper. Phys. 41, 603 (2015).
  34. V.B. Efimov, A.N. Izotov, A.A. Levchenko, L.P. Mezhov-Deglin, S.S. Khasanov. JETP Lett. 94, 621 (2011)
  35. V.B. Efimov, L.P. Mezhov-Deglin, O.G. Rybchenko. Low Temper. Phys. 46, 155 (2020)
  36. L.P. Mezhov-Deglin, A.M. Kokotin. JETP Lett. 70, 756 (1999)
  37. Peter Jenniskens, David F. Blake. Science 265, 753 (1994)
  38. Philip H. Handle, Thomas Loerting. J. Chem. Phys. 148, 124508 (2018).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru