The study of the process of hydrogenation of single-walled carbon nanotubes using inductively coupled argon-hydrogen plasma
Preobrazhensky E. I.1, Vodopyanov A. V.1,2, Nezhdanov A. V.2
1Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
2Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
Email: evgenypr@ipfran.ru

PDF
In this article it was demonstrated the possibility of partial hydrogenation of single-walled carbon nanotubes using an inductively coupled argon-hydrogen plasma. It was studied the changes in the Raman spectrum of samples of single-walled carbon nanotubes during plasma hydrogen intercalation with depending on the treatment time, the discharge power, the substrate material on which the nanotubes were deposited, and the control external voltage. The predominant role of hydrogen ions in the hydrogenation of single-walled carbon nanotubes has been demonstrated. Keywords: plasma chemistry, single-walled carbon nanotubes, hydrogenation,inductively coupled plasma, SWCNTs. DOI: 10.61011/TP.2023.07.56622.71-23
  1. Q. Peng, J. Crean, L. Han, S. Liu, X. Wen, S. De, A. Dearden. Nanotechnology, Science and Applications, 1 (2014). DOI: 10.2147/NSA.S40324
  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Science, 306 (5696), 666 (2004). DOI:10.1126/science.1102896
  3. V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim. Chem. Rev., 112 (11), 6156 (2012). DOI:10.1021/cr3000412
  4. S.M. Tan, Z. Sofer, M. Pumera. Electroanalysis, 25 (3), 703 (2013). DOI: 10.1002/elan.201200634
  5. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov. Science, 323 (5914), 610 (2009). DOI: 10.1126/science.1167130
  6. K.E. Whitener. J. Vacuum Sci. Technol. A, 36 (5), 05G401 (2018). DOI: 10.1116/1.5034433
  7. T. Hussain, A. de Sarkar, R. Ahuja. Appl. Phys. Lett., 101 (10), 103907 (2012). DOI: 10.1063/1.4751249
  8. E.I. Preobrazhensky, I.V. Oladyshkin, M.D. Tokman. Phys. Scripta, 97 (11), 115803 (2022). DOI: 10.1088/1402-4896/ac9564
  9. A. Vodopyanov, E. Preobrazhensky, A. Nezhdanov, M. Zorina, A. Mashin, R. Yakimova, D. Gogova. Superlattices and Microstructures, 160, 107066 (2021). DOI: 10.1016/j.spmi.2021.107066
  10. M. Wojtaszek, N. Tombros, A. Caretta, P.H.M. van Loosdrecht, B.J. van Wees. J. Appl. Phys., 110 (6), 063715 (2011). DOI: 10.1063/1.3638696
  11. R. Yakimova, C. Virojanadara, D. Gogova, M. Syvajarvi, D. Siche, K. Larsson, L.I. Johansson. Mater. Sci. Forum, 645-648, 565 (2010). DOI: 10.4028/www.scientific.net/MSF.645-648.565
  12. M. Brzhezinskaya, E.A. Belenkov, V.A. Greshnyakov, G.E. Yalovega, I.O. Bashkin. J. Alloys Compounds, 792, 713 (2019). DOI: 10.1016/j.jallcom.2019.04.107
  13. M. Brzhezinskaya, V. Shmatko, G. Yalovega, A. Krestinin, I. Bashkin, E. Bogoslavskaja. J. Electron Spectroscopy and Related Phenomena, 196, 99-103 (2014). DOI: 10.1016/j.elspec.2013.12.013
  14. B.N. Khare, M. Meyyappan, A.M. Cassell, C.V. Nguyen, J. Han. Nano Lett., 2 (1), 73 (2002). DOI: 10.1021/nl015646j
  15. M. Brzhezinskaya, O. Kononenko, V. Matveev, A. Zotov, I.I. Khodos, V. Levashov, V. Volkov, S.I. Bozhko, S.V. Chekmazov, D. Roshchupkin. ACS Nano, 15 (7), 12358 (2021). DOI: 10.1021/acsnano.1c04286
  16. I. Shtepliuk, I.G. Ivanov, T. Iakimov, R. Yakimova, A. Kakanakova-Georgieva, P. Fiorenza, F. Giannazzo. Mater. Sci. Semicond. Processing, 96, 145 (2019). DOI: 10.1016/j.mssp.2019.02.039
  17. A.C. Ferrari. Solid State Communic., 143 (1-2), 47 (2007). DOI:10.1016/j.ssc.2007.03.052
  18. K.P. Meletov, A.A. Maksimov, I.I. Tartakovskii, J. Arvanitidis, D. Christofilos, G.A. Kourouklis. J. Experimental Theoretical Phys., 112 (6), 979 (2011). DOI: 10.1134/S1063776111040091
  19. A.V. Talyzin, S. Luzan, I.V. Anoshkin, A.G. Nasibulin, H. Jiang, E.I. Kauppinen, V.M. Mikoushkin, V.V. Shnitov, D.E. Marchenko, D. Noreus. ACS Nano, 5 (6), 5132 (2011). DOI: 10.1021/nn201224k
  20. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio. Phys. Reports, 409 (2), 47 (2005). DOI: 10.1016/j.physrep.2004.10.006
  21. S.V. Rotkin, S. Subramoney. Applied Physics of Carbon Nanotubes (Springer, Berlin, Heidelberg, 2005), DOI: 10.1007/3-540-28075-8

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru