The study of the process of hydrogenation of single-walled carbon nanotubes using inductively coupled argon-hydrogen plasma
Preobrazhensky E. I.1, Vodopyanov A. V.1,2, Nezhdanov A. V.2
1Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
2Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
Email: evgenypr@ipfran.ru
In this article it was demonstrated the possibility of partial hydrogenation of single-walled carbon nanotubes using an inductively coupled argon-hydrogen plasma. It was studied the changes in the Raman spectrum of samples of single-walled carbon nanotubes during plasma hydrogen intercalation with depending on the treatment time, the discharge power, the substrate material on which the nanotubes were deposited, and the control external voltage. The predominant role of hydrogen ions in the hydrogenation of single-walled carbon nanotubes has been demonstrated. Keywords: plasma chemistry, single-walled carbon nanotubes, hydrogenation,inductively coupled plasma, SWCNTs. DOI: 10.61011/TP.2023.07.56622.71-23
- Q. Peng, J. Crean, L. Han, S. Liu, X. Wen, S. De, A. Dearden. Nanotechnology, Science and Applications, 1 (2014). DOI: 10.2147/NSA.S40324
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Science, 306 (5696), 666 (2004). DOI:10.1126/science.1102896
- V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim. Chem. Rev., 112 (11), 6156 (2012). DOI:10.1021/cr3000412
- S.M. Tan, Z. Sofer, M. Pumera. Electroanalysis, 25 (3), 703 (2013). DOI: 10.1002/elan.201200634
- D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov. Science, 323 (5914), 610 (2009). DOI: 10.1126/science.1167130
- K.E. Whitener. J. Vacuum Sci. Technol. A, 36 (5), 05G401 (2018). DOI: 10.1116/1.5034433
- T. Hussain, A. de Sarkar, R. Ahuja. Appl. Phys. Lett., 101 (10), 103907 (2012). DOI: 10.1063/1.4751249
- E.I. Preobrazhensky, I.V. Oladyshkin, M.D. Tokman. Phys. Scripta, 97 (11), 115803 (2022). DOI: 10.1088/1402-4896/ac9564
- A. Vodopyanov, E. Preobrazhensky, A. Nezhdanov, M. Zorina, A. Mashin, R. Yakimova, D. Gogova. Superlattices and Microstructures, 160, 107066 (2021). DOI: 10.1016/j.spmi.2021.107066
- M. Wojtaszek, N. Tombros, A. Caretta, P.H.M. van Loosdrecht, B.J. van Wees. J. Appl. Phys., 110 (6), 063715 (2011). DOI: 10.1063/1.3638696
- R. Yakimova, C. Virojanadara, D. Gogova, M. Syvajarvi, D. Siche, K. Larsson, L.I. Johansson. Mater. Sci. Forum, 645-648, 565 (2010). DOI: 10.4028/www.scientific.net/MSF.645-648.565
- M. Brzhezinskaya, E.A. Belenkov, V.A. Greshnyakov, G.E. Yalovega, I.O. Bashkin. J. Alloys Compounds, 792, 713 (2019). DOI: 10.1016/j.jallcom.2019.04.107
- M. Brzhezinskaya, V. Shmatko, G. Yalovega, A. Krestinin, I. Bashkin, E. Bogoslavskaja. J. Electron Spectroscopy and Related Phenomena, 196, 99-103 (2014). DOI: 10.1016/j.elspec.2013.12.013
- B.N. Khare, M. Meyyappan, A.M. Cassell, C.V. Nguyen, J. Han. Nano Lett., 2 (1), 73 (2002). DOI: 10.1021/nl015646j
- M. Brzhezinskaya, O. Kononenko, V. Matveev, A. Zotov, I.I. Khodos, V. Levashov, V. Volkov, S.I. Bozhko, S.V. Chekmazov, D. Roshchupkin. ACS Nano, 15 (7), 12358 (2021). DOI: 10.1021/acsnano.1c04286
- I. Shtepliuk, I.G. Ivanov, T. Iakimov, R. Yakimova, A. Kakanakova-Georgieva, P. Fiorenza, F. Giannazzo. Mater. Sci. Semicond. Processing, 96, 145 (2019). DOI: 10.1016/j.mssp.2019.02.039
- A.C. Ferrari. Solid State Communic., 143 (1-2), 47 (2007). DOI:10.1016/j.ssc.2007.03.052
- K.P. Meletov, A.A. Maksimov, I.I. Tartakovskii, J. Arvanitidis, D. Christofilos, G.A. Kourouklis. J. Experimental Theoretical Phys., 112 (6), 979 (2011). DOI: 10.1134/S1063776111040091
- A.V. Talyzin, S. Luzan, I.V. Anoshkin, A.G. Nasibulin, H. Jiang, E.I. Kauppinen, V.M. Mikoushkin, V.V. Shnitov, D.E. Marchenko, D. Noreus. ACS Nano, 5 (6), 5132 (2011). DOI: 10.1021/nn201224k
- M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio. Phys. Reports, 409 (2), 47 (2005). DOI: 10.1016/j.physrep.2004.10.006
- S.V. Rotkin, S. Subramoney. Applied Physics of Carbon Nanotubes (Springer, Berlin, Heidelberg, 2005), DOI: 10.1007/3-540-28075-8
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.