Influence of the homobuffer layer on the morphology, microstructure, and hardness of Al/Si(111) films
Lomov A. A.1, Zakharov D. M.1, Tarasov M. A.2, Chekushkin A. M.2, Tatarintsev A. A.1, Kiselev D. A.3, Ilyina T. S.3, Seleznev A. E.4
1Valiev Institute of Physics and Technology of RAS, Moscow, Russia
2Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
3National University of Science and Technology MISiS, Moscow, Russia
4Moscow State Technological University STANKIN, Moscow, Russia
Email: lomov@ftian.ru

PDF
The results of complementary studies of Al films grown by magnetron sputtering at room temperature are presented. The films were obtained on standard Si(111) substrates without and with a ~20 nm aluminum (homobuffer) layer preliminarily grown on their surface at 400oC. The interdependence of the morphology, microstructure, and hardness of Al films on the state of the substrate surface was studied by the HRXRR, XRD, SEM, EDS, AFM, and Nano Indenter (ASTM) methods. It is shown that the formation of homobuffer layers on the substrate surface makes it possible to control the structural and mechanical properties of thin aluminum films. Keywords: aluminium, thin films, morphology, microstructure, XRD, SEM and AFM, naation, magnetron sputtering. DOI: 10.61011/TP.2023.07.56624.83-23
  1. G. Hass, M.H. Francombe, J.L. Vossen. Physics of Thin Films-Research and Development (Academic Press, NY., USA, 1982)
  2. K. Barmak, K. Coffey. Metallic Films for Electronic. Optical and Magnetic Applications (Woodhead Publishing, Cambridge, UK, 2013)
  3. M.A. Tarasov, L.S. Kuzmin, V.S. Edelman, S. Mahashabde, P. de Bernardis. IEEE Transactions on Applied Superconductivity, 21 (6), 3635 (2011). DOI: 10.1109/TASC.2011.2169793
  4. N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U.C. Mendes, A. Blais, G. Scappucci, L.M.K. Vandersypen. Science, 359 (6380), 1123 (2018). DOI: 10.1126/science.aar4054
  5. M.C. Rao, M.S. Shekhawat. Intern. J. Modern Physics: Conf. Series, 22, 576 (2013). DOI: 10.1142/S2010194513010696
  6. N. Kaiser. Appl. Opt., 41 (16), 3053 (2002)
  7. M. Ohring. The Material Science of Thin Films (Academic Press, San Diego, Calif., USA, 1992)
  8. J. Venables. Introduction to Surfaces and Thin Film Processes (Cambridge U. Press, Cambridge, UK, 2000)
  9. D. Sibanda, S.T. Oyinbo, T.-C. Jen, A.I. Ibitoye. Processes, 10 (6), 1184 (2022). DOI: 10.3390/pr10061184
  10. R. Eason. Pulse Layer Deposition: Application-Led Growth of Functional Materials. (John Wiley \& Sons, Inc., Hoboken, New Jersey, 2007), DOI: 10.1002/0470052120
  11. I.V. Antonets, L.N. Kotov, S.V. Nekipelov, E.A. Golubev. ZhTF, 74 (3), 24 (2004) (in Russian)
  12. M.A. Tarasov, L.S. Kuzmin, N.S. Kaurova. Instrum. Exp. Tech., 52, 877 (2009). DOI: 10.1134/S0020441209060220
  13. V.V. Roddatis, U. Hubner, B.I. Ivanov, E. Il'ichev, H.-G. Meyer, A.L. Vasiliev. J. Appl. Phys., 110, 123903 (2011). DOI: 10.1063/1.3670003
  14. M. Tarasov, A. Gunbina, M. Fominsky, A. Chekushkin, V. Vdovin, V. Koshelets, E. Sohina, A. Kalaboukhov, V. Edelman. Electronics, 10 (23), 2894 (2021). DOI: 10.3390/electronics10232894
  15. U. Barajas-Valdes, O.M. Suarez. Crystals, 11 (5), 492 (2021). DOI: 10.3390/cryst11050492
  16. A.W. Fortuin, P.F.A. Alkemade, A.H. Verbruggen, A.J. Steinfort, H. Zandbergen, S. Radelaar. Surf. Sci., 366 (2), 285 (1996). DOI: 10.1016/0039-6028(96)00824-2
  17. A.Y. Cho, P.D. Dernier. J. Appl. Phys., 49 (6), 3328 (1978). DOI: 10.1063/1.325286
  18. W. Wang, W. Yang, Z. Liu, Yu. Lin, S. Zhou, H. Qian, H. Wang, Z. Lin, G. Li. Cryst. Eng. Comm., 16 (33), 7626 (2014). DOI: 10.1039/c4ce01076k
  19. I.A. Rodionov, A.S. Baburin, A.R. Gabidullin S.S. Maklakov, S. Peters, I.A. Ryzhikov, A.V. Andriyash. Scientif. Reports, 9, 12232 (2019) DOI: 10.1038/s41598-019-48508-3
  20. I.A. Rodionov, A.S. Baburin, I.A. Ryzhikov. Patent US 2021/0071292 A1 (2021)
  21. F.M. Mwema, O.P. Oladijo, S.A. Akinlabi, E.T. Akinlabi. J. Alloys Compd., 747, 306 (2018). DOI: 10.1016/j.jallcom.2018.03.006
  22. M. Adamik, P.B. Barna, I. Tomov. Thin Solid Films, 317, 64 (1998)
  23. J.F. Smith, F.T. Zold, W. Class. Thin Solid Films, 96, 291 (1982). DOI: 10.1016/0040-6090(82)90513-2
  24. J. Lin, J.J. Moore, W.D. Sproul, S.L. Lee, J. Wang. IEEE Transac. Plasma Sci., 38 (11), 3071 (2010). DOI: 10.1109/TPS.2010.2068316
  25. M. Kumar, A. Kumar, A.C. Abhyankar. ACS Appl. Mater. Interfaces, 7 (6), 3571 (2015). DOI: 10.1021/am507397z
  26. S.C. Tjong, H. Chen. Mater. Sci. Engineer., R 45, 1 (2004). DOI: 10.1016/j.mser.2004.07.001
  27. M. Birkholz. Thin Film Analysis by X-ray Scattering. (Weinheim: Wiley-VCH, 2006), DOI: 10.1002/3527607595
  28. B.M. McSkimming, A. Alexander, M.H. Samuels. J. Vac. Sci. Technol. A, 35, 021401 (2017). DOI: 10.1116/1.4971200
  29. S.G. Wang, E.K. Tian, C.W. Lung. J. Phys. Chem. Solids, 61, 1295 (2000). DOI: 10.1016/S0022-3697(99)00415-1
  30. K. Stoev, K. Sakurai. The Rigaku J., 14 (2), 22 (1997)
  31. S.A. Stepanov. X-ray Server, (1997). https://x-server.gmca.aps.anl.gov
  32. V. Holy, U. Pietsch, T. Baumbach. High- Resolution X-ray Scattering from Thin Films and Multilayers (Springer-Verlag, Berlin, Heidelberg, 1999)
  33. I.V. Kozhevnikov, A.V. Buzmakov, F. Siewert, K. Tiedtke, M. Stormer, L. Samoylova, H. Sinn. J. Synchrotron Rad., 23, 78 (2016). DOI: 10.1107/S160057751502202X
  34. V.I. Punegov, Ya.I Nesterets, S.V. Mytnichenko, N.V. Kovalenko, V.A. Chernov. Poverhnost. X-ray, Synchrotron and Neutron investigation, 1, 58 (2003). (russian)
  35. V.V. Shvartsman, A.L. Kholkin. J. Appl. Phys., 101 (6), 064108 (2007). DOI: 10.1063/1.2713084
  36. J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, D.C. Joy. Scanning Electron Microscopy and X-Ray Microanalysis (Springer, NY., USA, 2018), DOI: 10.1007/978-1-4939-6676-9
  37. W.C. Oliver, G.M. Pharr. J. Mater. Res., 7 (6), 1564 (1992). DOI: 10.1557/JMR.1992.1564
  38. M.J. Schneider, M.S. Chatterjee. Introduction to Surface Hardening of Steels, ASM Handbook, Volume 4A. (ASM International, USA, 2013), DOI: 10.31399/asm.hb.v04a.a0005771
  39. X. Li, B. Bhushan. Mater. Character., 48, 11 (2002). DOI: 10.1016/S1044-5803(02)00192-4
  40. G.V. Samsonov. Handbook of the Physicochemical Properties of the Elements (IFI-Plenum, NY., USA, 1968), DOI: 10.1007/978-1-4684-6066-7
  41. A. Prakash, D. Weygand, E. Bitzek. Intern. J. Plasticity, 97, 107 (2017). DOI: 10.1016/j.ijplas.2017.05.011
  42. E.N. Hahn, M.A. Meyers. Mater. Sci. Engineer.: A, 646, 101 (2015). DOI: 10.1016/j.msea.2015.07.075

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru