Study of the Effect of Growth Temperature on the Properties of Nitrogen-Doped Carbon Nanotubes for Designing Nanopiezotronic Devices
Il'ina M. V. 1, Rudyk N. N. 1, Soboleva O. I. 1, Polyvianova M. R.1, Khubezhov S. A. 2, Il'in O. I. 1
1Institute of Nanotechnologies, Electronics and Equipment Engineering, Southern Federal University, Taganrog, Russia
2Khetagurov North Ossetian State University, Vladikavkaz, Russia
Email: mailina@sfedu.ru, nnrudyk@sfedu.ru

PDF
The regularities of the influence of the growth temperature on the geometrical parameters, the concentration of the dopant nitrogen and the type of defects formed in carbon nanotubes grown on a molybdenum sublayer are established in this paper. It is shown that the best piezoelectric and resistive properties are observed in nitrogen-doped carbon nanotubes (N-CNTs) grown at a temperature of 525oC, which is due to the highest concentration of dopant nitrogen and high aspect ratio of nanotubes. Based on the results of thermodynamic analysis, the dependence of the dopant nitrogen concentration and the defect type on the tendency to form molybdenum nitrides and carbides during the growth of N-CNTs is shown. The obtained results can be used in the development of nanopiezotronic devices based on arrays of vertically aligned N-CNTs: nanogenerators, strain sensors and memory elements. Keywords: carbon nanotubes, PECVD, nanopiezotronics, nitrogen defects, piezoelectric response, X-ray photoelectron spectroscopy. DOI: 10.61011/TP.2023.07.56630.94-23
  1. S. Zhu, X. Dong, H. Huang, M.J. Qi. Power Sources, 459, 228104 (2020). https:/doi.org/10.1016j.jpowsour.2020.228104
  2. X. Li, J. Zhou, J. Zhang, M. Li, X. Bi, T. Liu, T. He, J. Cheng, F. Zhang, Y. Li, X. Mu, J. Lu, B. Wang. Adv. Mater., 31 (39), 1 (2019). https://doi.org/10.1002/adma.201903852
  3. W.Y. Shin, H.M. Jeong, B.G. Kim, J.K. Kang, J.W. Choi. Nano Lett., 12 (5), 2283 (2012). https://doi.org/10.1021/n13000908
  4. M. Il'ina, O. Il'in, O. Osotova, S. Khubezhov, N. Rudyk, I. Pankov, A. Fedotov, O. Ageev. Carbon N.Y., 190, 348 (2022). https://doi.org/10.1016/j.carbon.2022.01.014
  5. S.H. Lim, H.I. Elim, X.Y. Gao, A.T.S. Wee, W. Ji, J.Y. Lee, J. Lin. Phys. Rev. B-Condens. Matter. Mater. Phys., 73 (4), 1 (2006). https://doi.org/10.1103/PhysRevB73045402
  6. R. Sanchez-Salas, S. Kashina, R. Galindo, A.K. Cuentas-Gallegos, N. Rayon-Lopez, M. Miranda-Hernandez, R. Fuentes-Rami rez, F. Lopez-Uri as, E. Munoz-Sandoval. Carbon N.Y., 183, 743 (2021). https://doi.org/10.1016/j.carbon.2021.07.033
  7. M. Il'ina, O. Il'in, Y. Blinov, A. Konshin, B. Konoplev, O. Ageev. Materials (Basel), 11 (4), 638 (2018). https://doi.org/10.3390/ma11040638
  8. M.V. Il'ina, O.I. Il'in, A.V. Guryanov, O.I. Osotova, Y.F. Blinov, A.A. Fedotov, O.A. Ageev. J. Mater. Chem. C, 18, 6014 (2021). https://doi.org/10.1039/D1TC00356A
  9. Z.L. Wang. Adv. Mater., 19 (6), 889 (2007). https://doi.org/10.1002/adma.200602918
  10. M.V. Il'ina, O.I. Soboleva, S.A. Khubezov, V.A. Smirnov, O.I. Il'in. J. Low Power Electron. Appl., 13 (1), 11 (2023). https://doi.org/10.3390/jlpeal13010011
  11. H. Chen, A. Roy, J.B. Baek, L. Zhu, J. Qu, L. Dai. Mater. Sci. Eng. Reports, 70 (3-6), 63 (2019). https://doi.org/10.1016/j.mser.2010.06.003
  12. M.V. Il'ina, O.I. Osotova, N.N. Rudyk, S.A. Khubezhov, I.V. Pankov, O.A. Ageev, O.I. Il'in. Diam. Relat. Mater., 126, 109069 (2022). https://doi.org/10.1016/j.diamond.2022.109069
  13. M.V. Il'ina, O.I. Il'in, N.N. Rudyk, O.I. Osotova, A.A. Fedotov, O.A. Ageev. Nanomaterials, 11 (11), 2912 (2021). https://doi.org/10.3390/nano11112912
  14. O.A. Louchev. Phys. Status Solidi Appl. Res., 193 (3), 585 (2022). https://doi.org/10.1002/1521-396X(200210)193:3<585::AID-PSSA585>3.0.CO:2-Y
  15. E.A. Arkhipova, A.S. Ivanov, N.E. Strokova, S.E. Chernyak, A.V. Shumyantsev, K.I. Maslakov, S.V. Savilov, V.V. Lunin. Carbon N.Y., 125, 20 (2017). https://doi.org/10.1016/j.carbon.2017.09.013
  16. S. Kundu, W. Xia, W. Busser, M. Becker, D.A. Schmidt, M. Havenith, M. Muhler. Phys. Chem. Chem. Phys., 12 (17), 4351 (2010). https://doi.org/10.1039/B923651A
  17. R. Arrigo, M. Havecker, R. Schlogl, D.S. Su. Chem. Commun., 40, 4891 (2008). https://doi.org/10.1039/B812769G
  18. M.V. Il'ina, O.I. Il'in, O.I. Osotova, S.A. Khubezhov, O.A. Ageev. Nanobiotechnology Reports, 16 (6), 821 (2021). https://doi.org/10.1134/S2635167621060082
  19. M.V. Il'ina, O.I. Il'in, Y.F. Blinov, V.A. Smirnov, A.S. Kolomiytsev, A.A. Fedotov, B.G. Konoplev, O.A. Ageev. Carbon N.Y., 123, 514 (2017). https://doi.org/10.1016/j.carbon.2017.07.090

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru