On the numerical modeling of track-etched membranes used as collimators of the X-ray radiation
Mitrofanov A. V. 1, Feshchenko R. M. 1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: mitrofanovav@lebedev.ru, rusl@sci.lebedev.ru

PDF
In this work, we present the results of numerical modeling of distribution of the field amplitude inside micron-sized through cylindrical pores in polymer track membranes in the soft X-ray wavelength range 13.5-30.4 nm. The calculations were performed by numerically solving the 3D-parabolic equation with a finite-difference method using an exact transparent boundary condition. The dependences of the X-ray transmittivity through a pore on the incidence angle as well as on the pore diameter were computed. For the membranes with some thicknesses and pore diameters calculated angular dependences of the transmittance are compared with the measurements known from the literature. It is demonstrated that the calculations agree with the measurements if a transition layer on the inner surface of the pores, which accounts for the finite surface roughness, is introduced. Keywords: X-ray optics, solar astronomy, filters, parabolic equation.
  1. G.N. Flerov, V.S. Barashenkov. Sov. Phys. Usp. 17 (5), 783-793 (1974). DOI: 10.1070/PU1975v017n05ABEH004371
  2. P.Yu. Apel, S.N. Dmitriev. Track In: Membranes and membrane technology, ed. by A.B. Yaroslavtsev (Science World, M., 2013), p. 117-160. (in Russian)
  3. M. Dominique, A.V. Mitrofanov, J.-F. Hochedez, P.Yu. Apel, U. Schuhle, F.A. Pudonin, O.L. Orelovich, S.Yu. Zuev, D. Bol-see, C. Hermans, A. BenMoussa. Appl. Opt., 48 (5), 834 (2009). DOI: 10.1364/AO.48.000834
  4. A.V. Mitrofanov. Quant. Electron., 48 (2), 105-110 (2018). DOI: 10.1070/QEL16540
  5. A.V. Mitrofanov, P.Yu. Apel. Nucl. Instrum. Meth. B, 245, 332 (2006). DOI: 10.1070/QEL16540
  6. A.V. Mitrofanov, P.Y. Apel. Bull. Russ. Acad. Sci. Phys., 73 (1), 57 (2009). DOI: 10.3103/S106287380901016X
  7. Solar-Terrestrial Physics: Results of the Experiments of Koronas-F Satellite, ed. by V.D. Kuznetsov (Physmatlit, M., 2009), p. 73 (in Russian)
  8. A.V. Mitrofanov. Insrum. Experim. Tech., 27 (4), 966 (1984)
  9. A.V. Mitrofanov, R.M. Feshchenko. Bull. Lebedev Phys. Inst., 49 (6), 169-173 (2022). DOI: 10.3103/S1068335622060057
  10. X-Ray Interactions with Matter [Electronic source] Electron. data Center for X-Ray Optics. Lawrence Berkeley National Laboratory, 2010 Available at: www.cxro.lbl.gov/optical_constants, open access
  11. A.V. Mitrofanov, A.V. Popov, D.V. Prokopovich. Radioelectronics. Nanosystems. Information Technologies, 12 (2), 173 (2020). DOI: 10.17725/rensit.2020.12.173 (in Russian)
  12. R.M. Feshchenko, A.V. Popov. Phys. Rev. E, 104 (2), 025306 (2021). DOI: 10.1103/PhysRevE.104.025306
  13. V.A. Bushuev, O.D. Roshchupkina. Bull. Russ. Acad. Sci. Phys., 71 (1), 59 (2007). DOI: 10.3103/S1062873807010157

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru