S. V. Shitov1,2
1Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
2University of Science and Technology (NITU) MISiS", Moscow, Russia
Email: sergey3e@gmail.com
The concept of an active superconducting terahertz detector for array applications is based on the combination of an RFTES bolometer and a microwave preamplifier based on a DC SQUID within the common integrated circuit providing the maximum, theoretically possible, signal transmission from the sensor to the amplifier. The problems associated with the design and positioning of the amplifier, that restrict the functionality and sensitivity of the ultra-low temperature detector, are considered. For the first time, a method for connecting a SQUID amplifier to an RFTES bolometer using the principle of partial loads of a resonator has been proposed and analyzed. The presented electromagnetic model of the active detector is suitable for optimization of RFTES, MKID and other detectors using high-Q superconducting planar resonators. Keywords: RFTES, DC SQUID, low-noise amplifier, parametric amplifier, planar resonator, high-Q resonator, partial load of resonator, electromagnetic modelling. DOI: 10.61011/TP.2023.07.56639.116-23
- T.S. Kuhn. Black-Body Theory and the Quantum Discontinuity, 1894-1912. 2nd ed. (Chicago: University of Chicago Press, 1987)
- J. Ruhl, P.A.R. Ade, J.E. Carlstrom, et al. Proc. SPIE Int. Soc. Opt. Eng. 5543 (2004). DOI: 10.1117/12.552473
- J. Bae, R. Teague, S.M. Andrews et al. The Astrophys. J. Lett., 934 (2), L20 (2022). DOI: 10.3847/2041-8213/ac7fa3
- A.T. Lee, P.L. Richards, S.W. Nam, B. Cabrera, K.D. Irwin. Appl. Phys. Lett., 69 (12), 1801 (1996). DOI: 10.1063/1.117491
- P.A.J. de Korte, J. Beyer, S. Deiker, G.C. Hilton, K.D. Irwin, M. Macntosh, S.W. Nam, C.D. Reintsema, L.R. Vale. Rev. Sci. Instrum., 74, 3087 (2003). DOI: 10.1063/1.1593809
- D.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas. Nature, 425, 817 (2003). DOI: 10.1038/nature02037
- T.M. Lanting, H. Cho, J. Clarke, M. Dobbs, A.T. Lee, P.L. Richards, A.D. Smith, H.G. Spieler. IEEE Trans. Appl. Sup., 13 (2), 626 (2003). DOI: 10.1109/TASC.2003.813973
- B.S. Karasik, R. Cantor. Appl. Phys. Lett., 98, 193503 (2011). DOI: 10.1063/1.3589367
- S.V. Shitov, N.N. Abramov, A.A. Kuzmin, M. Merker, M. Arndt, S. Wuensch, K.S. Ilin, E.V. Erhan, A.V. Ustinov, M. Siegel. IEEE Trans. Appl. Supercond., 25 (3), (2014). DOOI: 10.1063/1.4995981
- A.V. Merenkov, V.I. Chichkov, A.E. Ermakov, A.V. Ustinov, S.V. Shitov. Hafnium MEGA Array Detector. Proc. 2019 EUCAS, Glasgow (2019)
- A.V. Merenkov, T.M. Kim, V.I. Chichkov, S.V. Kalinkin, S.V. Shitov. FTT, 64 (10), 1404 (2022). (in Russian). DOI: 10.21883/FTT.2022.10.53081.50HH
- M. Mueck, R. McDermott. Supercond. Sci. Technol., 23, 093001 (2010). DOI: 10.1088/0953-2048/23/9/093001
- A.B. Zorin. Phys. Rev. Appl., 6, 034006 (2016). DOI: 10.1103/PhysRevApplied.6.034006
- C. Mattis, J. Bardeen. Phys. Rev., 111, 412 (1958). DOI: 10.1103/PhysRev.111.412
- A. Kuzmin, S.V. Shitov, A. Scheuring, J.M. Meckbach, K.S. Il'in, S. Wuensch, A.V. Ustinov, M. Siegel. IEEE Trans. Terahertz Sci. Techn., 3 (1), 25 (2013). DOI: 10.1109/TTHZ.2012.2236148
- Cadence AWR Microwave Office. Electronic source. Available at: https://www.flowcad.com/en/awrmicrowave-office.thm
- G.V. Prokopenko, S.V. Shitov, I.L. Lapitskaya, V.P. Koshelets, J. Mygind. IEEE Trans. on Appl. Supercond., 13 (2), 1042 (2003). DOI: 10.1109/TASC.2003.814146
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.