Phase transformations in gallium oxide layers
Osipov A. V. 1, Sharafudinov Sh. Sh. 2, Kremleva A. V. 3, Osipova E. V. 1, Smirnov A. M.3, Kukushkin S. A. 1
1Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3ITMO University, St. Petersburg, Russia
Email: andrey.v.osipov@gmail.com

PDF
The three main crystalline modifications of Ga2O3, namely α-phase, ε-phase, and β-phase were grown on sapphire substrates using the hydride vapour phase epitaxy (HVPE) method. The temperatures of the substrates and the values of the precursor fluxes required to obtain each phase exclusively were determined. It was observed that the metastable ε-phase easily transforms into a stable β-phase during annealing. However, the metastable α-phase undergoes an intermediate amorphous phase during annealing, leading to flaking and collapse. This behavior arises from the excessively large increase in density (~ 10%) during the transformation from α-phase to β-phase, which results in significant elastic stresses and an increase in the height of the phase transition barrier. Keywords: reconstructive phase transitions, gallium oxide, polymorphs, Raman spectrum. DOI: 10.61011/TPL.2023.09.56697.19632
  1. P. Toledano, V. Dmitriev, Reconstructive phase transitions in crystals and quasicrystals (World Scientific, Singapore, 1996)
  2. Yu.M. Gufan, Strukturnye fazovye perekhody (Nauka, M., 1982) (in Russian)
  3. V.I. Kalikmanov, Nucleation theory (Springer, Dordrecht, 2013)
  4. D. Kashchiev, Nucleation. Basic theory with applications (Butterworth-Heinemann, Oxford, 2003)
  5. V.V. Slezov, Kinetics of first-order phase transitions (Wiley-VC, Weinheim, 2009)
  6. V.G. Dubrovskii, Nucleation theory and growth of nanostructures (Springer, Berlin, 2014)
  7. l.V. Markov, Crystal growth for beginners (World Scientific, Singapore, 1995)
  8. V.N. Detsik, S.A. Kukushkin, A.V. Osipov, E.Yu. Kaptelov, I.P. Pronin, J. Cryst. Growth, 187 (3-4), 474 (1998). DOI: 10.1016/S0022-0248(97)00594-0
  9. S.A. Kukushkin, A.V. Osipov, Phys. Solid State, 61 (3), 288 (2019). DOI: 10.1134/S1063783419030181
  10. S.I. Stepanov, V. Nikolaev, V.E. Bougrov, A. Romanov, Rev. Adv. Mater. Sci., 44, 63 (2016). https://www.ipme.ru/e-journals/RAMS/no_14416/06_14416_stepanov.pdf
  11. N.S. Jamwal, A. Kiani, Nanomaterials, 12 (12), 2061 (2022). DOI: 10.3390/nano12122061
  12. S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, Appl. Phys. Rev., 5 (1), 011301 (2018). DOI: 10.1063/1.5006941
  13. A.V. Osipov, Sh.Sh. Sharofidinov, E.V. Osipova, A.V. Kandakov, A.Y. Ivanov, S.A. Kukushkin, Coatings, 12 (12), 1802 (2022). DOI: 10.3390/coatings12121802
  14. A.V. Osipov, A.S. Grashchenko, S.A. Kukushkin, V.I. Nikolaev, E.V. Osipova, A.I. Pechnikov, I.P. Soshnikov, Continuum Mech. Thermodyn., 30 (5), 1059 (2018). DOI: 10.1007/s00161-018-0662-6

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru