The effect of the target material and the size of the irradiated volume on the efficiency of ozone synthesis in plasma created by pulsed electron beam in air
Kuznetsov D. L. 1, Surkov Yu. S. 1, Filatov I. E. 1
1Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
Email: kdl@iep.uran.ru, yus@iep.uran.ru, fil@iep.uran.ru

PDF
The effect of the target material and the size of the irradiated volume on the efficiency of ozone synthesis in air under the action of a pulsed electron beam is investigated. Graphite and lead targets were used. The highest concentration of ozone was observed in a chamber without a target, and the highest specific ozone yield without consideration of electron reflection (230 g· (kW· h)-1) was observed in a chamber with a lead target at a minimum air gap (3 cm). The results are explained by the processes of multiple reflection of electrons from elements with a high atomic number at small air gaps compared to the size of the target. Keywords: pulsed electron beam, ozone synthesis, non-equilibrium plasma, electron reflection. DOI: 10.61011/TPL.2023.09.56699.19648
  1. M.R. Cleland, R.A. Galloway, Phys. Procedia, 66, 586 (2015). DOI: 10.1016/j.phpro.2015.05.078
  2. Y.A. Kotov, S.Y. Sokovnin, IEEE Trans. Plasma Sci., 28 (1), 133 (2000). DOI: 10.1109/27.842883
  3. K. Yang, K. Li, L. Pan, X. Luo, L. Wang, R. Wang, Y. Zhai, Z. Chen, J. Wang, J. Zing, Toxins, 12 (2), 138 (2020). DOI: 10.3390/toxins12020138
  4. T.I. Poznyak, I.C. Oria, A.S. Poznyak, Ozonation and biodegradation in environmental engineering (Elsevier, 2019), p. 325--349. DOI: 10.1016/B978-0-12-812847-3.00021-4
  5. I. Filatov, V. Uvarin, D. Kuznetsov, in 2020 7th Int. Congress on energy fluxes and radiation effects (EFRE) (IEEE, 2020), p. 317. DOI: 10.1109/EFRE47760.2020.9242056
  6. S. Barshan, A. Pazirandeh, G. Jahanfarnia, J. Instrum., 15 (1), P01004 (2020). DOI: 10.1088/1748-0221/15/01/P01004
  7. N. Hara, J. Oobuchi, A. Isobe, S. Sugimoto, J. Takatsu, K. Sasai, Rad. Oncol., 17 (1), 39 (2022). DOI: 10.1186/s13014-022-02005-6
  8. V.G. Shpak, S.A. Shunailov, M.I. Yalandin, J. Phys.: Conf. Ser., 2064, 012002 (2021). DOI: 10.1088/1742-6596/2064/1/012002
  9. I.E. Filatov, V.V. Uvarin, D.L. Kuznetsov, Tech. Phys. Lett., 46 (1), 94 (2020). DOI: 10.1134/S1063785020010216
  10. L.T. Molina, J. Geophys. Res.: Atmospheres, 91 (D13), 14501 (1986). DOI: 10.1029/JD091iD13p14501
  11. J.B. Marion, F.C. Young, Nuclear reaction analysis: graphs and tables (North Holland Publ. Co., Amsterdam, 1968), p. 20--21
  12. J.I. Goldstein, H. Yakowitz, D.E. Newbury, E. Lifshin, J.W. Colby, J.R. Coleman, Practical scanning electron microscopy: electron and ion microprobe analysis (Plenum Press, N.Y., 1975), p. 49--68

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru