Quenching detonation in a hydrogen-air mixture in a plane channel
Levin V. A. 1, Zhuravskaya T. A. 1
1Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
Email: levin@imec.msu.ru, zhuravskaya@imec.msu.ru

PDF
The paper presents the results of a numerical study of the interaction of a formed cellular detonation wave propagating in a stoichiometric hydrogen-air mixture at rest in a plane channel, with multiple obstacles (barriers) located on the inner surface of the channel. The influence of geometrical parameters of a domain with obstacles on detonation propagation has been investigated. It has been found that the location of obstacles in the deepening of the channel wall leads to a decrease in their destructive effect on the wave. The possibility of extinguishing detonation by a layer of air located along the channel well, limited by single barriers, has been studied. It has been established that filling the domain with barriers with air or argon enhances their destructive effect on the wave, thereby contributing to suppression of detonation combustion. Keywords:: Plane channel, detonation, multiple obstacles, air layer, failure of detonation. DOI: 10.61011/TPL.2023.09.56717.19657
  1. A.A. Vasil'ev, A.V. Pinaev, A.A. Trubitsyn, A.Yu. Grachev, A.V. Trotsyuk, P.A. Fomin, A.V. Trilis, Combust. Explos. Shock Waves, 53 (1), 8 (2017). DOI: 10.1134/S0010508217010026
  2. I.A. Bedarev, A.V. Fedorov, J. Phys.: Conf. Ser., 894 (1), 012008 (2017). DOI: 10.1088/1742-6596/894/1/012008
  3. D.A. Tropin, Int. J. Hydrogen Energy, 47 (66), 28699 (2022). DOI: 10.1016/j.ijhydene.2022.06.169
  4. T. Obara, J. Sentanuhady, Y. Tsukada, S. Ohyagi, Shock Waves, 18 (2), 117 (2008). DOI: 10.1007/s00193-008-0147-9
  5. S.P. Medvedev, S.V. Khomik, B.E. Gel'fand, Russ. J. Phys. Chem. B, 3 (6), 963 (2009). DOI: 10.1134/S1990793109060165
  6. H. Qin, J.H.S. Lee, Z. Wang, F. Zhuang, Proc. Combust. Inst., 35 (2), 1973 (2015). DOI: 10.1016/j.proci.2014.07.056
  7. O.V. Sharypov, Y.A. Pirogov, Comb. Explos. Shock Waves, 31 (4), 466 (1995). DOI: 10.1007/BF00789368
  8. A. Teodorczyk, J.H.S. Lee, Shock Waves, 4 (4), 225 (1995). DOI: 10.1007/BF01414988
  9. M.I. Radulescu, J.H.S. Lee, Combust. Flame, 131 (1-2), 29 (2002). DOI: 10.1016/S0010-2180(02)00390-5
  10. V.A. Levin, T.A. Zhuravskaya, Tech. Phys. Lett., 46 (2), 189 (2020). DOI: 10.1134/S1063785020020248
  11. T.A. Zhuravskaya, V.A. Levin, Fluid Dyn., 55 (4), 488 (2020). DOI: 10.1134/S0015462820040138
  12. V.A. Levin, T.A. Zhuravskaya, Dokl. Phys., 66 (12), 320 (2021). DOI: 10.1134/S1028335821110057
  13. Thermodynamic properties of individual substances, ed. by L.V. Gurvich, I.V. Veyts (Hemisphere, N.Y., 1989), vol. 1, pt 2
  14. L.V. Bezgin, V.I. Kopchenov, A.S. Sharipov, N.S. Titova, A.M. Starik, Combust. Sci. Technol., 185 (1), 62 (2013). DOI: 10.1080/00102202.2012.709562
  15. A.V. Rodionov, USSR Comput. Math. Math. Phys., 27 (2), 175 (1987). DOI: 10.1016/0041-5553(87)90174-1
  16. Vl. Voevodin, A. Antonov, D. Nikitenko, P. Shvets, S. Sobolev, I. Sidorov, K. Stefanov, Vad. Voevodin, S. Zhumatiy, Supercomput. Front. Innov., 6 (2), 4 (2019). DOI: 10.14529/jsfi190201
  17. R.I. Soloukhin, Udarnye volny i detonatsiya v gazakh (GIFML, M., 1963), pp. 150-152 (in Russian)
  18. G.Yu. Bivol, S.V. Golovastov, V.V. Golub, Shock Waves, 28 (5), 1011 (2018). DOI: 10.1007/s00193-018-0831-3

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru