Molecular dynamics modeling rheology of nanofluids
Rudyak V. Ya. 1, Belkin A. A. 1, Rafalskaya T. A. 1
1Novosibirsk State University of Architecture and Civil Engineering, Novosibirsk, Russia
Email: valery.rudyak@mail.ru, a.belkin@sibstrin.ru, rafalskaya.ta@yandex.ru

PDF
The rheology of benzene and nanofluids based on it with spherical particles has been studied by the method of nonequilibrium molecular dynamics. As the shear rate increases, all these fluids become pseudoplastic. Critical values of the shear rates of rheology change and their dependence on the concentration of nanoparticles, their size and material are established. The change in rheology is accompanied by a change in the structure of the studied fluids, which is illustrated by the evolution of the corresponding radial distribution functions. Keywords: molecular dynamics method, nanofluids, viscosity, rheology.
  1. A.K. Sharma, A.K. Tiwari, A.R. Dixit, Renew. Sustain. Energy Rev., 53, 779 (2016). DOI: 10.1016/j.rser.2015.09.033
  2. V.Ya. Rudyak, Interfac. Phenom. Heat Transfer, 9 (2), 29 (2021). DOI: 10.1615/InterfacPhenomHeatTransfer.2021035919
  3. R.P. Chhabra, J.F. Richardson, Non-Newtonian flow and applied rheology (Butterworth--Heinemann, Oxford, 2008)
  4. D.C. Rapaport, The art of molecular dynamics simulation (Cambridge University Press, Cambridge, 2004)
  5. F. Jabbari, A. Rajabpour, S. Saedodin, Chem. Eng. Sci., 174, 67 (2017). DOI: 10.1016/J.CES.2017.08.034
  6. N.D. Kondratyuk, V.V. Pisarev, Phys. Usp., 66 (4), 410 (2023). DOI: 10.3367/UFNe.2021.11.039102
  7. V.Ya. Rudyak, A.A. Belkin, S.L. Krasnolutskii, in Advances in molecular dynamics simulations research, ed. by S. Kohlerd (Nova Science Publ., N.Y., 2021), p. 1--86
  8. I. Topal, J. Servantie, Chem. Phys., 516, 147 (2019). DOI: 10.1016/j.chemphys.2018.09.001
  9. D.S. Devarajan, P. Nourian, G.B. McKenna, R. Khare, J. Rheology, 64, 529 (2020). DOI: 10.1122/1.5125142
  10. P.J. in't Veld, M.K. Petersen, G.S. Grest, Phys. Rev. E, 79 (2), 021401 (2009). DOI: 10.1103/physreve.79.021401
  11. H. Li, H. Tian, Y. Chen, S. Xiao, X. Zhao, Y. Gao, L. Zhang, J. Phys. Chem. B, 127 (15), 3596 (2023). DOI: 10.1021/acs.jpcb.3c01697
  12. W.P. Krekelberg, T.M. Truskett, V. Ganesan, Chem. Eng. Commun., 197 (1), 63 (2009). DOI: 10.1080/00986440903070718
  13. V.Ya. Rudyak, S.L. Krasnolutskii, Tech. Phys., 47 (7), 807 (2002). DOI: 10.1134/1.1495039
  14. V.Ya. Rudyak, S.L. Krasnolutskii, D.A. Ivanov, Dokl. Phys., 57 (1), 33 (2012). DOI: 10.1134/S1028335812010053
  15. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in't Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, Comput. Phys. Commun., 271, 108171 (2022). DOI: 10.1016/j.cpc.2021.108171
  16. A.I. Volkov, I.M. Zharskii, Bol'shoi khimicheskii spravochnik (Sovremennaya Shkola, Minsk, 2005) (in Russian)
  17. O. Borodin, G.D. Smith, H. Kim, J. Phys. Chem. B, 113 (14), 4771 (2009). DOI: 10.1021/jp810016e
  18. G.K. Batchelor, J. Fluid Mech., 83 (1), 97 (1977). DOI: 10.1017/S0022112077001062

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru