Analysis of the internal optical losses of the 89X nm-range intracavity-contacted vertical-cavity surface-emitting lasers
Blokhin S. A.
1, Bobrov M.A.
1, Blokhin A. A.
1, Kovach J. N.
1, Maleev N.A.
1, Kuzmenkov A. G.
1, Zadiranov Yu. M.
1, Kulagina M.M.
1, Guseva Yu.A.
1, Vasyl’ev A. P.
2, Ustinov V. M.
21Ioffe Institute, St. Petersburg, Russia
2Submicron Heterostructures for Microelectronics, Research & Engineering Center, RAS, Saint-Petersburg, Russia
Email: blokh@mail.ioffe.ru, bobrov.mikh@gmail.com, aleksey.blokhin@mail.ioffe.ru, j-n-kovach@mail.ioffe.ru, Maleev@beam.ioffe.ru, kuzmenkov@mail.ioffe.ru, zadiranov@mail.ioffe.ru, Marina.Kulagina@mail.ioffe.ru, guseva.ja@gmail.com, vasiljev@mail.ioffe.ru, vmust@beam.ioffe.ru
The paper presents a study of static characteristics of the 89X nm-range vertical-cavity surface-emitting lasers in the geometry of a vertical-microcavity with intracavity contacts and diamond-shaped oxide-confined current aperture. The proposed microcavity design could simultaneously provide a single-mode lasing regime and narrow laser-emission line. The internal optical losses were evaluated for devices with different-size oxide-confined current apertures. It was shown that the proposed design could provide a current injection efficiency of more than ~ 80% and internal optical loss less than 12 cm-1 (for the effective cavity length of 3.4 μm) in the current aperture size range of 1.5-3 μm, which is extremely important for minimizing threshold currents in single-mode lasers with small apertures. Keywords: vertical-cavity surface-emitting laser, single-mode lasing, polarization, linewidth, modulation bandwidth.
- J. Kitching, Appl. Phys. Rev., 5 (3), 031302 (2018). DOI: 10.1063/1.5026238
- R. Michalzik, VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers (Springer-Verlag, Berlin, 2013). DOI: 10.1007/978-3-642-24986-0
- P.D.D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, L.-A. Liew, Appl. Phys. Lett., 90 (8), 081102 (2007). DOI: 10.1063/1.2709532
- D. Meyer, M. Larsen, Gyroscopy Navig., 5 (2), 75 (2014). DOI: 10.1134/S2075108714020060
- S. Knappe, V. Shah, P.D.D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, J. Moreland, Appl. Phys. Lett., 85 (9), 1460 (2004). DOI: 10.1063/1.1787942
- W. Nakwaski, Opto-Electron. Rev., 19 (1), 119 (2011). DOI: 10.2478/s11772-010-0075-y
- S.A. Blokhin, N.A. Maleev, M.A. Bobrov, A.G. Kuzmenkov, A.P. Vasiliev, Yu.M. Zadiranov, M.M. Kulagina, A.A. Blokhin, Yu.A. Guseva, A.M. Ospennikov, M.V. Petrenko, A.G. Gladyshev, A.Yu. Egorov, I.I. Novikov, L.Ya. Karachinsky, D.V. Denisov, V.M. Ustinov, Quantum Electron., 49 (2), 187 (2019). DOI: 10.1070/QEL16871
- E.R. Hegblom, D.I. Babic, B.J. Thibeault, L.A. Coldren, IEEE J. Sel. Top. Quantum Electron., 3 (2), 379 (1997). DOI: 10.1109/2944.605682
- N.A. Maleev, A.G. Kuzmenkov, M.M. Kulagina, Yu.M. Zadiranov, A.P. Vasiliev, S.A. Blokhin, A.S. Shulenkov, S.I. Troshkov, A.G. Gladyshev, A.M. Nadtochiy, M.M. Pavlov, M.A. Bobrov, D.E. Nazaruk, V.M. Ustinov, Semiconductors, 47 (7), 993 (2013). DOI: 10.1134/s1063782613070166
- M. Jungo, F.M. di Sopra, D. Erni, W. Baechtold, J. Appl. Phys., 91 (9), 5550 (2002). DOI: 10.1063/1.1462422
- S.A. Blokhin, N.A. Maleev, A.G. Kuzmenkov, A.V. Sakharov, M.M. Kulagina, Y.M. Shernyakov, I.I. Novikov, M.V. Maximov, V.M. Ustinov, A.R. Kovsh, S.S. Mikhrin, N.N. Ledentsov, G. Lin, J.Y. Chi, IEEE J. Quantum Electron., 42 (9), 851 (2006). DOI: 10.1109/JQE.2006.880125
- G.M. Yang, M.H. MacDugal, V. Pudikov, P.D. Dapkus, IEEE Photon. Technol. Lett., 7 (11), 1228 (1995). DOI: 10.1109/68.473454
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.