Magomedov M. N.
11Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru
Based on the fact of irreversibility of the real first-order phase transition (PT-1), an inequality was obtained that generalizes the Clapeyron-Clausius equation (CCE) in the case of irreversibility of PT-1: the Clapeyron-Clausius inequality. It was shown that the CCE determines only the maximum possible slope of the line PT-1 in the coordinates temperature-pressure and temperature-intensity of an external homogeneous magnetic (or electric) field. Analysis of experimental data for various types of PT-1 has shown that the deviation from the CCE is more noticeable the more jump in volume or jump in magnetization (or polarization) at PT-1. Keywords: first-order phase transition, Clapeyron-Clausius equation, irreversibility, magnetic field.
- R. Tahir-Kheli. General and Statistical Thermodynamics. Springer Nature Switzerland AG, Cham (2020). DOI: 10.1007/978-3-030-20700-7
- I.B. Sladkov, M.S. Nedoshivina. Russ. J. Appl. Chem. 74, 3, 390 (2001). DOI: 10.1023/A:1012716805509
- D. Koutsoyiannis. Eur. J. Phys. 33, 2, 295 (2012). DOI: 10.1088/0143 0807/33/2/295
- B.A. Mosienko. Z. Physik. Chem. 222, 10, 1533 (2008). DOI: 10.1524.zpch.2008.5316
- I.A. Stepanov. Physica B: Condens. Matter 349, 1--4, 251 (2004). DOI: 10.1016/j.physb.2004.03.177
- S. Raju. Metallurg. Mater. Transact. A 52A, 5274 (2021). DOI: 10.1007/s11661-021-06466-4
- M.N. Magomedov. Technical Physics Letters 28, 2, 116 (2002). DOI: 10.1134/1.1458508
- N.V.R. Rao, M.M. Raja, S.E. Muthu, S. Arumugam, S. Pandian. J. Appl. Phys. 116, 22, 223904 (2014). DOI: 10.1063/1.4903958
- A.V. Mashirov, A.P. Kamantsev, A.V. Koshelev, E.A. Ovchenkov, E.T. Dilmieva, A.S. Los, A.M. Aliev, V.V. Koledov, V.G. Shavrov. IEEE Transact. Magn. 53, 11, 1 (2017). DOI: 10.1109/TMAG.2017.2697205
- K. Takenaka, T. Sugiura, Y. Kadowak, M. Ozeki, Y. Okamoto, A. Fujita. J. Phys. Soc. Jpn 90, 4, 044601 (2021). DOI: 10.7566/JPSJ.90.044601
- B.B. Kadomtsev. Phys.-Usp. 38, 8, 923-929 (1995). DOI: 10.1070/PU1995v 038n08ABEH000102]
- D. Frenkel. Physica A 263, 1--4, 26 (1999). DOI: 10.1016/S0378-4371(98)00501-9
- Q. Jiang, X.H. Zhou, M. Zhao. J. Chem. Phys. 117, 22, 10269 (2002). DOI: 10.1063/1.1520145
- R. Kalyanaraman. J. Appl. Phys. 104, 3, 033506 (2008). DOI: 10.1063/1.2961329
- M.N. Magomedov. Phys. Met. Metallography 105, 2, 116 (2008). DOI: 10.1134/S0031918X08020038
- M. Ov zvold. Mater. Lett. 64, 4, 555 (2010). DOI: 10.1016/j.matlet.2009.12.005
- J. Coppock, Q. Waxter, R. Wolle, B.E. Kane. J. Phys. Chem. C 126, 42, 17990 (2022). DOI: 10.1021/acs.jpcc.2c04014
- M.N. Magomedov. Condens. Matter Interphases 15, 4, 418 (2013). https://journals.vsu.ru/kcmf/article/view/928 (in Russia)
- S. Gama, A. De Campos, A.A. Coelho, C.S. Alves, Y. Ren, F. Garcia, D.E. Brown, L.M. da Silva, A.M.G. Carvalho, F.C.G. Gandra, A.O. dos Santos, L.P. Cardoso, P.J. von Ranke. Adv. Functional Mater. 19, 6, 942 (2009). DOI: 10.1002/adfm.200801185
- V.I. Zverev, R.R. Gimaev. Physica B: Condens. Matter 502, 187 (2016). DOI: 10.1016/j.physb.2016.09.005
- A.N. Mestvirishvili, J.G. Directovich, S.J. Grigoriev, M.E. Perelman. Phys. Lett. A 60, 2, 143 (1977). DOI: 10.1016/0375-9601(77)90409-1
- S.A. Sall', A.P. Smirnov. Tech. Phys. 45, 7, 849 (2000). DOI: 10.1134/1.1259737
- M.E. Perel'man, V.A. Tatartchenko. Phys. Lett. A 372, 14, 2480 (2008). DOI: 10.1016/j.physleta.2007.11.056
- V.A. Tatartchenko, P.V. Smirnov, Y. Wu. Opt. Photon. J. 3, 8A, 1 (2013). DOI: 10.4236/opj.2013.38A001
- A.A. Fedorets, D.N. Medvedev, V.Y. Levashov, L.A. Dombrovsky. Int. J. Thermal Sci. 188, 108222 (2023). DOI: 10.1016/j.ijthermalsci.2023.108222
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.