Dynamics of the interface in piezoelectric with the temperature gradient under cooling with a finite rate
Chevrychkina A.A.
1, Korzhenevskii A.L.
1
1Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
Email: chaa@ipme.ru, alekorzh@mail.ru
The paper analyzes the dynamics of an interphase boundary (IPB) entrained by a moving isotherm with a given velocity Viso(t) in a ferroelectric with a piezoelectric effect in the paraphase. Within the framework of the model, in which the dependence of the thermodynamic potential on polarization is given by two intersecting parabolas, a non-linear differential equation of the second order is derived for the X(t) coordinate of the nonstationary IFB. It is shown that this equation describes the dynamics of the IFB well for almost all experimentally used modes of isotherm motion. Keywords: Phase transition, piezoelectric effect in paraphase, temperature gradient, moving isotherm, derivation of the differential equation of motion for nonstationary interphase boundary.
- K.R. Elder, M. Grant, N. Provatas, J.M. Kosterlitz. Phys. Rev. E 64, 021604 (2001)
- A.L. Korzhenevskii, R. Bausch, R. Schmitz. Phys. Rev. E 83, 041609 (2011).
- E.G. Fesenko, M.A. Martynenko, V.G. Gavrilyachenko, A.F. Semenchev. Izv. AN SSSR, Ser. fiz. 39, 762 (1975). (in Russian)
- S.M. Yufatova, Y.G. Sindeyev, V.G. Gavrilyachenko, E.G. Fesenko. Ferroelectrics 26, 809 (1980)
- E.G. Fesenko, V.G. Gavrilyachenko, A.F. Semenchev, S.M. Yufatova. FTT 27, 1194 (1985). (in Russian)
- J. Dec. Ferroelectrics 69, 187 (1986)
- J. Dec. Phys. C 21, 1257 (1988)
- J. Dec. Ferroelectrics 89, 193 (1989)
- J. Dec. Phase Transitions 45, 35 (1993)
- M. Lima, W. Kurz. Met. Mater. Trans. A 33, 2337 (2002)
- A. Jacot, M. Sumida, W. Kurz. Acta Mater. 59, 1716 (2011)
- G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley. Springer Handbook of Crystal Growth, Springer-Verlag Berlin Heidelberg (2010). 1818 p
- M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trivedi. Acta Mater. 57, 941 (2009)
- A.L. Korzhenevskii, R. Bausch, R. Schmitz. Phys. Rev. Lett. 108, 046101 (2012)
- A.L. Korzhenevskii, R. Bausch, R. Schmitz. Phys. Rev. E 85, 021605 (2012)
- E. Babushkina, N.M. Bessonov, A.L. Korzhenevskii, R. Bausch, R. Schmitz. Phys. Rev. E 87, 042402 (2013)
- R.E. Rozas, A.L. Korzhenevskii, J. Horbach. J. Phys. 28, 035001 (2016)
- A.A. Chevrychkina, N.M. Bessonov, A.L. Korzhenevsky. FTT 61, 2122 (2019). (in Russian)
- A.A. Chevrychkina, N.M. Bessonov, A.L. Korzhenevskii, D.V. Alexandrov. Eur. Phys. J. Spec. Top. 229, 253 (2020)
- A.A. Chevrychkina, N.M. Bessonov, A.L. Korzhenevsky. FTT 62, 1244, (2020). (in Russian)
- A.A. Chevrychkina, A.L. Korzhenevskii. Eur. Phys. J. Spec. Top. 231, 1147 (2022)
- M. Lines, A. Glass. Segnetoelektriki i rodstvennye im materialy, Mir, M., (1981), 736 s (in Russian)
- A.V. Turik, A.I. Chernobabov, G.S. Radchenko, S.A. Turik. FTT 46, 2139 (2004). (in Russian)
- F. Li, L. Jin, Z. Xu, S. Zhang. Appl. Phys. Rev. 1, 011103 (2014)
- J. Wu, D. Xiao, J. Zhu. Chem. Rev. 115, 2559 (2015)
- K. Xu, J. Zhu, D. Xiao, X. Zhang, and J. Wu. Chem. Soc. Rev. 49, 671 (2020)
- W. Wang, J. Wang, R. Wang, Z. Chen, F. Han, K. Lu, C. Wang, Z. Xu, B. Ju. Micromashins 12, 1366 (2021)
- C. Zhao, H. Feng, Y. Huang, X. Wu, M. Gao, T. Lin, C. Lin. Crystals 13, 1324 (2023)
- L.D. Landau, E.M. Lifshitz. Teoriya uprugosti, Nauka, M., (1987), 246 s. (in Russian)
- H. Loewen, S.A. Schofield, D.W. Oxtoby, J. Chem. Phys. 94, 5685 (1991)
- A. Boulbitch and A.L. Korzhenevskii. Phys. Rev. E 108, 014114 (2023)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.